NCETE Core 4 Research Paper

Selected Topics: Others Approved

(Under the General Topic of "Engineering Design in Secondary Education" and of

"Vision and Recommendations for Engineering-Oriented Professional Development")

HIGH SCHOOL APPROPRIATE ENGINEERING CONTENT KNOWLEDGE IN THE INFUSION OF ENGINEERING DESIGN INTO K-12 CURRICULUM: STATICS

NCETE Core 4 - Engineering Design in STEM Education

Spring 2009

College of Education

University of Georgia

Professors: Dr. Kurt Becker (Utah State University) and

Dr. Mark Tufenkjian (California State University Los Angeles)

Advisors: Dr. John Mativo, Dr. Robert Wicklein, and Dr. Sidney Thompson

Student: Edward Locke (elocke@uga.edu)

Table of Content

Content	Page
PART ONE: INTRODUCTION	U
Purpose of this Research Paper	1
The Particular or Immediate Purpose of the Research Paper	
The General or Ultimate Aim of this Research Paper and its Seamless	
Connection to NCETE Research Agenda	2
Potential Significance of this Research Paper	3
Research Question	4
PART TWO: REVIEW OF LITERATURE	6
Rationales for this Research Paper	6
Previous Scholarly Endeavors at Infusion of Engineering Design into	
K-12 Technology Education	7
Existing Models to Help Solving the Problem of Shortage in	
Engineering Graduates	7
New Ideas for a Cohesive and Systemic Improvement of K-12 Engineering	
and Technology Education in the United States	8
Connection to NCETE Agenda	9
Importance of Engineering Analytic Knowledge Content	10
Necessary Components for Engineering-Oriented Professional	
Development	10
Differences between Conceptual and Procedural Knowledge	12
Contributions of Scholars at the University of Georgia in Identifying	
Specific Engineering Analytic Knowledge Content for	
K-12 Institutions	13
PART THREE: K-12 STUDENTS' MATHEMATICS & SCIENCE	
PREPARATION BASED ON GEORGIA PERFORMANCE STANDARDS	
FOR A POTENTIAL IMPLEMENTATION OF ENGINEERING	10
CURRICULUM	
Limitation of This Study	18
Sections of Georgia Performance Standards Directly Relevant to the	
Infusion of Engineering Analytic Content Knowledge into	10
the K-12 Curriculum	19
Mathematics Preparations	20
The Role of Mathematics Skills	20

Table of Content (Continued)

Content	Page
Applied Engineering Mathematics	22
Selection of Academic Performance Standards	22
An Urgent Need to Increase Domestic Students' Opportunities in Engineering Education	25
Georgia Performance Standards in Mathematics Directly Relevant to the Infusion of Engineering Analytic Content Knowledge throughout the K-12 Curriculum	27
Science Preparations: Physics, Chemistry and Materials, Environmental	
Science and Related Topics	36
Importance of Science Preparation	37
Georgia Performance Standards for Engineering and Technology	46
Characteristics of Georgia Performance Standards in Engineering and Technology	46
Mutual Compatibility between Georgia Performance Standards for Engineering and Technology and the Proposed Model of Infusing Engineering Design into K-12 Curriculum	48
Relevance of Georgia Performance Standards for Engineering and	40
Technology to Infusion of Engineering Analytic Content Knowledge into K-12 Curriculum	50
PART FOUR: SELECTION OF HIGH SCHOOL APPROPRIATE	
ENGINEERING ANALYTIC CONTENT KNOWLEDGE FOR THE SUBJECT OF STATICS	53
Source materials	53
Selecting High School Appropriate Topics of Engineering Analytic and Predictive Principles and Computational Formulas for the	
Subject of Statics	53
Procedures of Analysis and Selection	54
Adjustment for Mathematically "Highly-Talented" Students	56
PART FIVE: STRATEGIES FOR IMPLEMENTING ENGINEERING	
ANALYTIC AND PREDICTIVE PRINCIPLES AND COMPUTATIONAL	
SKILLS INTO K-12 ENGINEERING CURRICULUM	103
Structural Incorporation of Engineering Topics into K-12	
Engineering Curriculum	103
Strategy for Infusing Pre-calculus Level Statics Topics	103
Strategy for Infusing Beginning Calculus Level Statics Topics	106

Table of Content (Continued)

Content	Page
Selecting the Most Important Engineering Analytic and Predictive Principles	
and Formulas for K-12 Engineering Curriculum	112
A Proposed Five-Point Likert Scale Survey Study	112
Developing Appropriate Pedagogic Strategy for	
K-12 Engineering Curriculum	118
Differences between High School and College Students and Pedagogic	
Strategy for K-12 Engineering Curriculum	118
Modernization of Engineering Pedagogy	119
Important Considerations to be Taken	120
PART SIX: STRATEGIC VISION FOR ENGINEERING-ORIENTED	
PROFESSIONAL DEVELOPMENT	123
Vision for an Up to Beginning Calculus-Level K-12 Engineering &	
Technology Teachers' Professional Development	123
Technical Details of the Vision	125
Professional Development for Future K-12 Engineering and	
Technology Teachers	130
Curricular development	133
PART SEVEN: CONCLUSIONS & RECOMMENDATIONS	135
The Contribution of this Research Paper	135
Recommendations for Further Study	137
REFERENCE	

List of Tables

Table	Page
Table 1. Commonly Shared Undergraduate Lower-Division Engineering	
Foundation Course among Various Engineering Programs at	
the University of Georgia	19
Table 2A: Grades K-8 Number, Four Operations & Algebra Topics Completion	
Chart (According to Georgia Performance Standards)	29
Table 2B. Grades K-8 Geometry Topics Completion Chart	
(According to Georgia Performance Standards)	30
Table 2C. Grades K-6 Measurement & Comparison Topics Completion Chart	
(According to Georgia Performance Standards)	31

Table Page Table 2D. Grades K-8 Data Analysis, Probabilities & Statistics Topics Completion Chart (According to Georgia Performance Standards) 32 Table 2E. Grades 9-12 Number, Operations & Functions Topics Completion Chart (According to Georgia Performance Standards) 33 Table 2F. Grades 9-12 Trigonometry & Analytic Geometry Topics Completion Chart (According to Georgia Performance Standards) 34 Table 2G. Grades 9-12 Linear Algebra Topics Completion Chart Table 2H. Grades 9-12 Vector Graphic Topics Completion Chart (According to Georgia Performance Standards) 35 Table 2K. Grades 9-12 Data Analysis, Probabilities & Statistics Topics Completion Chart (According to Georgia Performance standards) 35 Table 3A. Grades K-8 Physics-Related Science Topics Completion Chart (According to Georgia Performance Standards) 41 Table 3B. Grades 9-12 Physics Topics Completion Chart (According to Georgia Performance Standards) 42 Table 4A. Grades K-8 Chemistry & Materials Related Topics Completion Chart (According to Georgia Performance Standards) 43 Table 4B. Grades 9-12 Chemistry Topics Completion Chart (According to Georgia Performance Standards) 44 Table 5. Grades 3 and 5 Environment Science Topics Completion Chart (According to Georgia Performance Standards) 45 Table 6. Grade 7 General Scientific Approach Topics Completion Chart (According to Georgia Performance Standards) 45 Table 7. Georgia Performance Standards for Engineering and Technology -Proposed "K-12 Engineering Road Map Compatibility Chart 49 Table 8. Engineering Topics Mathematics and Science Pre-requisite

Table 9. Delphi - Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for High School Engineering Curriculum

Table 10. Delphi - Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for High School Engineering Curriculum

(For the Pre-calculus Portion) 81

List of Tables (Continued)

List of Figures

Figure	Page
Figure 1A. The Statics course in the Academic Flow Chart for the	
Mechanical Design Option of the proposed K-12 Engineering and	
Technology Teacher Education program	4
Figure 1B. The Statics course in the Academic Flow Chart for the	
Manufacturing Option of the proposed K-12 Engineering and Technology	
Teacher Education program	5
Figure 2. University of Georgia scholars contributions to improving K-12	
engineering and technology education	14
Figure 3. Grades 6-12 mathematics courses under	
Georgia Performance Standards	24
Figure 4A. Website of Georgia Performance Standards for	
Science (Grades K-8)	36
Figure 4C. Georgia Performance Standards for Engineering and Technology	47
Figure 4D. Proposed Model for Infusing Engineering Design	
into K-12 Curriculum	48
Figure 5. Engineering Topics Mathematics and Science Pre-requisite	
Completion Chart	54
Figure 7. Two different approaches for infusing engineering analytic course	
content into K-12 engineering curriculum	112
Figure 8. Table 9 survey form	117
Figure 9. Project-Base Learning improves high school students	
core STEM skills	119
Figure 10. The Academic Flow Chart for the Electrical and	
Electronics Option of my previously presented Proposed Model for	
K-12 Engineering and Technology Teacher Education program	122
Figure 11. Recommended additional research	139