Appendix 1

Proposed Four-Stage Model for Infusing Engineering Design into K-12 Curriculum

For

HIGH SCHOOL APPROPRIATE ENGINEERING CONTENT KNOWLEDGE IN THE INFUSION OF ENGINEERING DESIGN INTO K-12 CURRICULUM

(Under the General Topic of "Engineering Design in Secondary Education" and of "Vision and Recommendations for Engineering-Oriented Professional Development")

Summer 2009

College of Education University of Georgia

Professors: Dr. Robert Wicklein, Dr. Roger Hill and Dr. John Mativo (College of Education)

> Advisors: Dr. Sidney Thompson and Dr. David Gattie (Driftmier Engineering Center)

> Student: Edward Locke (edwardnlocke@yahoo.com)

> > Last Review Date:

Thursday, July 9, 2009

Note:

This Appendix to the Research Project has been originally written during Fall 2008, in the NCETE Core 3 - Engineering Design: Synthesis, Analysis, and Systems Thinking course taught from the University of Georgia, by Dr. Robert Wicklein and Dr. Roger Hill (Workforce Education) Dr. David Gattie, Dr. Nadia Kellam and Dr. Sid Thompson (Driftmier Engineering Center).

The Proposed Model explored in this Research Paper has been presented at the International Technology Education Association's 71st Annual Conference held in the Kentucky International Convention Center (Friday March 27, 2009, in Louisville, Kentucky), under the sponsorship of Dr. John Mativo.

Review and editing has been made during Summer 2009

Table of Content

Content	Page
Introduction - The Rationale for Writing This Paper	2
Background of this paper	2
Objective of this paper	3
Dr. Roger Hills' constructive philosophy, Dr. Robert Wicklein and Dr. Jay Rojewski's critical advice for K-12 technology education reform, and	
potential significance of this paper	4
Part One - Literature Review	7
Conclusions from previous scholarly research	7
Implementation of scholarly guidelines in the proposed model	8
Part Two - The Construction of a New Bachelor of Science Degree in K-12 Engineering and Technology Teacher Education as a Logical Extension of the Existing Career and Technology Education Program at	
the University of Georgia	10
What high schools need for the years to come: The goals of the Georgia Department of Education for K-12 Engineering and Technology Career Pathway	10
How we are preparing our K-12 educators for the years to come: The requirements of UGA Bachelor's of Science in Education Degree in Career and Technology Education (Technology Education Certificate)	
Program	11
The pre-engineering preparation of high school students needed for a smooth transition into University undergraduate engineering programs	12
Rationale for infusing engineering design into technology curriculum: Bridging the gaps among k-12 engineering and technology curriculum, teacher education, and university engineering majors	14
Basic components of a practical model for infusing engineering design into K-12 engineering and technology teacher education program at university level	17

Table of Content (Continued)

Content	Page
A practical need for change	23
The proposed program as a modified version of the existing program at UGA	24
Incorporation of the conclusions from the dissertation of Dr. Phillip Cameron Smith Jr. into the proposed model	32
Part Three - The Overall Structure of the Proposed Model for Infusing Engineering Design into K-12 Engineering and Technology Teacher Education Curriculum: A The Four-Stage Model	38
Linearly incremental progression of engineering design process in the Regular Curriculum for the proposed K-12 Engineering and Technology Teacher Education program	38
Recursive iteration of engineering design process in extracurricular activities	41
Part Four - The Ultimate Expected Outcome of the Proposed Model: A Focus on Future K-12 Students	43
A streamlined engineering and technology education across K-12 and collegiate levels	43
Infusion of engineering design throughout the K-12 education	46
Vital issues affecting contemporary engineering design and innovation	49
Educating new generations of ethical and ecologically-conscious and yet profitable innovators and inventors	51
Limitations on expected outcome	53
Potential contribution of the proposed model	54
Part Five - Making Design the Integrating Factor Linking Engineering and Science Through High School Engineering and Technology Program	55

Table of Content (Continued)

Content	Page
1 st approach (a moderate approach): Infusing engineering and technology topics into K-12 mathematics, physics and chemistry courses	56
2 nd approach (a drastic approach): Decomposing mathematics, physics and chemistry courses into modules and incorporating them into an integrative STEM curriculum throughout K-12 education	57
Part Six - Feasibility of the Proposed Model	58
Part Seven - Available Pedagogic Resources for the Implementation of the Proposed Model	65
Part Eight - The Potential Value of the Proposed Model: The Fundamental Differences between the Proposed Model and the Existing Programs	66
Major differences between the proposed model and existing programs	66
Moving beyond engineering and technology education Summary and Recommendations	
References	78

List of Tables

Table	Page
Table 1. State of Georgia Career Pathways in Engineering and Technology	10
Table 2. Comparison Between Georgia DOE High School Career Pathways andB.S. in Education in Career and Technology Education at UGA	12
Table 3. Comparison between Georgia DOE High School Career PathwaysProgram and Engineering Programs at UGA	13
Table 4. Proposed new B.S. in Education Degree in K-12 Engineering and Technology Teacher Education for the College of Education, University of Georgia	15
Table 5. Foundation Engineering and Technology Courses	27

Table	Page
Table 6. Courses under Engineering Analysis and Technology Options	28
Table 7. Capstone Engineering Design Courses	28
Table 8. The Proposed General Model of K-12 Engineering and TechnologyTeacher Education for the National Center for Engineering andTechnology Education	30
Table 9. Incorporation of Dr. Smith and Dr. Wicklein's items into the Proposed Courses	32
Table 10. Engineering-Focused Curriculum for High School	55
Table 11. Major Differences between the Proposed Model and the Existing Programs	72

List of Figures

Figure	Page
Figure 1. Relationship among the three components in the K-12 through university engineering and technology cycle	13
Figure 2. The three components for including engineering design into K-12 engineering and technology teacher education programs, and "concept map" for infusing engineering design into K-12 engineering and	
technology education	19
Figure 3. My Combined Engineering and Technology Design Process, its integration into the K-12 Engineering Design Process adapted by NCETE, and the model of teaching	22
Figure 4. Road map showing the sequence of engineering analysis and design content in the proposed K-12 Engineering and Technology Teacher Education	37
Figure 5. Road Map for an Integrated Engineering and Technology Curriculum (K-12 to College) for Mechanical Engineering Career Pathway	44

List of Figures (Continued)

Figure	Page
Figure 6. Encouraging K-5 pupils science fiction style creative imagination and teaching simple engineering design with gear assembly toys	45
Figure 7. "Space shuttle launch" analogy for the sequence of infusion of engineering design across K-12 and collegiate levels	45
Figure 8. "Space station" analogy for the post-baccalaureate upgrading of innovative engineering design capabilities, through graduate schools, or continuing training of digital simulation, CAD, CAM and other engineering design related technologies	48
Figure 9. Space-saving foldable car using three types of energy source (battery, biofuel, and gas) invented by David, a British inventor in his 30s	52
Figure 10. Bicycle using solar energy invented in Britain	53
Figure 11.Solar-powered building that can rotate on wheals and tracks, invented by Hamilton, a British inventor	53
Figure 12. Examples of circle-to-square transition pieces (sheet-metal connector and restaurant take-home food container)	56
Figure 13. Sirinterlikci and Mativo's successful Animatronics project	62
Figure 14. Finnish grades 5-8 electronics design project	63
Figure 15. Possible outcomes when K-12 students graduate from high school	69
Figure 16. The way the proposed Model links past and current achievement with future possibilities	70
Figure 17. A streamlined vision for STEM education from K-12 through community colleges to universities and beyond	75
Figure 18. Sequence of integrated K-12 engineering and technology courses with analytic and design course content	

List of Appendices

Appendix	Page
APPENDIX 1-A - Sample Units	81
APPENDIX A-1-1 - Sample Unit 1: Engineering Design Idea Generation ("Creative Conceptual Design" Stage, Using "Brainstorming Sessions")	81
APPENDIX 1-A-2 - Sample Unit 2: Engineering Design Experiment "Technology Education Design" Stage	101
APPENDIX 1-A-3 - Sample Unit 3: Well-structured Problem and Simple Engineering Design "Analytic Reduction" Stage "Combined Engineering and Technology Design Process"	113
APPENDIX 1-A-4 - Sample Unit 4: Ill-structured Problem and Complex Engineering Design "Systems Thinking" Stage of Holistic Design "Combined Engineering and Technology Design Process"	122
APPENDIX 1-B - The United Stated Department of Labor State Occupational Projections - Long Term For Engineering and Technology Professional	134
APPENDIX 1-C - Revised and New Course Description for the University of Georgia and the National Center for Engineering and Technology Education	140
APPENDIX 1-D - Proposed New Course Syllabus for the University of Georgia	150
APPENDIX 1-D-1 - ETES 5090B/7090B - Principles of Technology: Strength of Materials & Material Selection	151
APPENDIX 1-D-2 - ETES 5090E - Mechanism Design and Selection (Pre-Calculus Version)	153
APPENDIX 1-D-3 - ETES 5110B/7110B – Engineering Design II	156
APPENDIX 1-E - Available Resources for Infusing Engineering Design into K- 12 Engineering and Technology Curriculum	159
APPENDIX 1-F - My Four-Stage Curriculum Model for Incorporating Engineering Design Into K-12 Technology Education Programs For the State of California Through California State University Los Angeles	167

List of Appendices (Continued)

Appendix	Page
APPENDIX 1-F-1 - Proposal for a B.S. Degree in K-12 Engineering and	
Technology Teacher Education (194 - 197 units) For California	
State University, Los Angeles	168
APPENDIX 1-F-2 - New Course Descriptions For the Proposed Bachelor of Science in K-12 Engineering and Technology Teacher Education For California State University, Los Angeles	176