Appendix 3A
 High School Appropriate Statics Tables

For
 HIGH SCHOOL APPROPRIATE ENGINEERING CONTENT KNOWLEDGE IN THE INFUSION OF ENGINEERING DESIGN

INTO K-12 CURRICULUM
(Under the General Topic of "Engineering Design in Secondary Education" and of "Vision and Recommendations for Engineering-Oriented Professional Development") Summer 2009 (Completion Date: Thursday, July 9, 2009)

College of Education, University of Georgia

Professors:
Dr. Robert Wicklein, Dr. Roger Hill and Dr. John Mativo
Advisors:

Dr. Sidney Thompson and Dr. David Gattie (Driftmier Engineering Center)
Student:
Edward Locke (edwardnlocke@yahoo.com)

Notes on How to Use This Appendix

The whole Research Project and this Appendix constitute the groundwork for a proposed four-round five-point Likert Scale survey study, with five major steps in its research design:

1. Preliminary selection of high school appropriate statics topics;
2. Presentation of data to faculty advisors for review;
3. Presentation of data to a panel of university faculty for validation and endorsement;
4. 4-round Delphi study using 5-point Likert Scale;
5. Comparative analysis of the results from the 4-round Delphi study, for the creation of a formal list of high school appropriate engineering topics.

Participants in the "4-round Delphi study using 5-point Likert Scale" might include the following groups of stakeholders in engineering and technology education:

- Group 1 (University Engineering and Technology Faculty);
- Group 2 (University K-12 Technology Education Faculty);
- Group 3 (University Undergraduate Senior-Year Engineering Students);
- Group 4 (K-12 Technology and STEM Teachers and Administrators);
- Group 5 (Practicing Engineers and Technicians).

Figure 1A. The main textbook where the Statics related engineering analytic and predictive principles and computational formulas are extracted.

Figure 1C. The Volume 1 of the Instructor's and Solutions Manual for the main textbook used to double-check for the mathematics and physics principles and computational skills needed for the study of various topics of statics contained in the main textbook.

Figure 1C. The Volume 2 of the Instructor's and Solutions Manual for the main textbook used to double-check for the mathematics and physics principles and computational skills needed for the study of various topics of statics contained in the main textbook.

Textbook Information

	Main Textbook	Instructor's Solution Manuals	
Title	Vector Mechanics for Engineers Statics, $7^{\text {th }}$ Edition	Instructor's and Solutions Manual to Accompany Vector Mechanics for Engineers - Statics, $7^{\text {th }}$ Edition, Volume 1	Instructor's and Solutions Manual to Accompany Vector Mechanics for Engineers - Statics, $7^{\text {th }}$ Edition, Volume 2
Authors	Ferdinand P. Beer \& E. Russell Johnston \& Elliot R. Eisenberg	Ferdinand P. Beer \& E. Russell Johnston \& Elliot R. Eisenberg	Ferdinand P. Beer \& E. Russell Johnston \& Elliot R. Eisenberg
Publisher	McGraw-Hill Higher Education	McGraw-Hill Higher Education	McGraw-Hill Higher Education
Year	2004	2004	2004
ISBN	0-07-230493-6	10:0072536055	10:0072962623

This Appendix contains tabulated information on the initial determination of high school (at $9^{\text {th }}$ Grade level) appropriate engineering analytic and predictive principles and computational formulas for the subject of statics; this determination is based on the satisfaction of pre-requisite mathematics and science (namely, physics) education, as mandated by Georgia Performance Standards established by the State of Georgia Department of Education (available at https://www.georgiastandards.org/Pages/Default.aspx). The above-mentioned principles and computational formulas have been extracted from one of the most popular university undergraduate lower-division textbook on statics; associated reference books have been used as well (see Figures 1A, 1B, and 1C). The Appendix contains the following:

- Part One - Initial Determination of High School ($9^{\text {th }}$ Grade) Appropriate Statics Topics: This Part covers the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ of the above-listed 5 major steps of the proposed study (i.e., "preliminary selection of high school appropriate engineering topic," "presentation of data to faculty advisors for review," and "presentation of data to a panel of university faculty for validation and endorsement"); and it contains the Statics Topic List (Engineering Topics Mathematics and Science Pre-requisite Completion Chart for the Subject of Statics), on pages 14-36. As shown in Figures 2A and 2B, on the tabulated list, the columns listing the mathematics and physics pre-requisites for the study of each statics topic are listed on the right of the column containing the titles of the chapters and sections with associated formulas, which are symbolic representations of engineering analytic and predictive principles. The list will serve two purposes:

1. For data review and validation: The list will be submitted to Dr. Robert Wicklein, Dr. John Mativo, and Dr. Roger Hill at the College of Education, the University of Georgia, for review, and for validation of the findings at technical level, in terms of validity of pre-requisite sequence and of high school students’ preparedness for learning the engineering knowledge content identified therein. Dr. Robert Wicklein is a veteran educator profoundly and broadly experienced in teaching both K-12 and university students engineering design and technology. Dr. John Mativo has strong academic background and long history of professional practice in both mechanical and electrical engineering, and over 15 years of working experience in university engineering instruction as well as in the development of K-12 appropriate engineering curriculum. Dr. Roger Hill is a veteran professor in the area of workforce education and is very knowledgeable about K-12 education process. All of them possess great expertise in making judgment on the feasibility of infusing specific engineering knowledge content into K-12 curriculum. To facilitate such review and validation, proposed procedures are available on pages 8-13. After Dr. Robert Wicklein, Dr. Roger Hill and Dr. John Mativo complete the review and validation process, the list would be edited to make corrections to all possible errors and mistakes; and if necessary and possible, the corrected list might be submitted to a panel of university faculty for additional validation and endorsement; and the potential members of this panel would be selected among engineering processors with experience teaching statics course for at least three semesters in an ABET-accredited undergraduate engineering program, from four-year universities granting master's and/or doctoral degrees in mechanical and civil engineering.
2. As part of the $1^{\text {st }}$ round of the proposed four-round five-point Likert Scale Delphi study: The expert opinions on the relative importance of each topic of statics (with analytic principles and computational formulas), collected from the review and validation process conducted by the above professors will be counted as part of the data for the first round of the Delphi study and statistically analyzed and processed accordingly, so as to prepare for the second round of the proposed Delphi survey with the above-mentioned five Groups of Participants.

- Part Two - $1^{\text {st }}$ Round of Delphi - Five-Point Likert Scale Survey Forms: This Part prepares for the $4^{\text {th }}$ of the abovelisted 5 major steps of the proposed study; and it contains two survey forms (i.e., the first round of the "4-round Delphi study using 5-point Likert Scale"). The Survey Forms will be presented to the above-mentioned five Groups of Participants for the first round of the proposed Delphi survey. To facilitate the survey, detailed information on how to fill out survey forms are available on pages 37-43.

1. Statics Survey Form A (1 $1^{\text {st }}$ Round of Delphi - Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for High School Engineering Curriculum (For the Pre-calculus Portion): As the name implies, this list covers only the statics topics with computational formulas requiring no calculus related skills. (pp. 44-52).
2. Statics Survey Form B (Delphi - Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for High School Engineering Curriculum (For the Calculus Portion): As the name implies, this list covers only the statics topics with computational formulas requiring calculus related skills. (pp. 53-64).

- Part Three - Findings from the Research Project: This Part contains tabulated lists showing the results of this research project, which might be used as reference in the future endeavors to infuse statics related engineering analytic and predictive principles and computational skills into a potentially viable high school engineering and technology curriculum, which shall be based on the organic and seamless integration of solid mastery of engineering analytic and predictive principles and innovative application of engineering design process.
o List 1A. Pre-Calculus Based Statics Topics That Possibly Could Be Taught at $9^{\text {th }}$ Grade: The statistic summary of data at the end of this list (p .69) indicates that a significant portion of statics knowledge content covered in the selected undergraduate level textbook could possibly be taught to high school students. 58.7% of all Sections, and 56.0% of the volume in the selected textbook is based on pre-calculus mathematics and on principles of physics students are supposed to learn before or by $9^{\text {th }}$ Grade, according to Georgia Performance Standards (p. 69).
o List 1B. Pre-Requisite Mathematics and Science Topics to Be Reviewed Before Teaching the Pre-Calculus Portion of Statics Topics to $9^{\text {th }}$ Grade Students: This list includes 16 sets of mathematics principles and skills, as well as7 sets of physics principles and skills that are needed as pre-requisites or as important topics to be reviewed for the effective learning of statics topics initially determined as appropriate for $9^{\text {th }}$ Grade students (p. 171).
o List 2A. Calculus Base Statics Topics for Post-Secondary Engineering Education: Topics of statics on this list are either recommended for post-secondary engineering education, or for inclusion as application problems in $11^{\text {th }}$ or $12^{\text {th }}$ Grade Advanced Placement Calculus course (p. 71).
o List 2B. Pre-Requisite Math and Science Topics to Be Reviewed Before Teaching the Calculus Portion of Statics Topics: This list includes 33 sets of mathematics principles and skills, as well as 10 sets of physics principles and skills that are needed as pre-requisites or as important topics to be reviewed for the effective learning of statics topics initially
recommended either for university engineering students or for high school $11^{\text {th }}$ or $12^{\text {th }}$ Grade students enrolled in Advanced Placement Calculus courses (p. 72).

Figure 2A. Engineering Topics Mathematics and Science Pre-requisite Completion Chart for the Subject of Statics.

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Engineering Subject: Statics.				
Engineering Analytic Topics \& Typical Formulas [Pre-requisite Math Skills/ Science Principles]	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 8: Friction (Continued)				
8.10: Belt Friction $\ln \frac{T_{2}}{T_{1}}=\mu_{s} \beta \quad \frac{T_{2}}{T_{1}}=e^{\mu, \beta}$ (For other fomulas, refer to pp. 451-452)	[summation/addition] (M6N1) $\rightarrow 6^{\text {th }}(2 \mathrm{~A})$ [four operations] (M1N3) $\rightarrow 1^{\text {th }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or $(\mathrm{M} / \mathrm{N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [logarithmic functions] (MA2A4) $\rightarrow 10^{\text {th }}(2 \mathrm{E})$ \rightarrow To be taught as a special math topic [integration] $\rightarrow 12^{\text {th }}$ (to be taught) [differentiation] $\rightarrow 12^{\text {th }}$ (to be taught)	[force] $(\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$ Whole chapter	PS	PS
Integration and differentiation		apropriate for university undergraduate statics course		

Figure 2B. Notation for undergraduate level appropriate statics topics.

Part One: Initial Determination of High School ($9^{\text {th }}$ Grade) Appropriate Statics Topics

Proposed Procedures for Review and Validation

To facilitate review and validation of the initial selection of statics topics that could be possibly taught to students at $9^{\text {th }}$ or above Grade, as listed in the Statics Topic List, the following procedures are hereby proposed:

1. Look at the formulas listed under the Engineering Analytic Topics \& Typical Formulas column, and check the mathematics and science pre-requisite items under the Math and Physics/Chemistry columns; verify if there are necessary pre-requisite that are missing; if so, write a note in either the Math or Physics/Chemistry column; and if any listed item is not really needed, cross it out with a horizontal strikethrough (as shown on Figure 3A);
2. Rate the importance of each Section as a topic in a potentially viable $9^{\text {th }}$ or above Grade statics subject, and write a number representing its "importance" value (Figure 3A), using the five-point Likert Scale (Figure 3B);
3. Check the formulas listed under the Engineering Analytic Topics \& Typical Formulas column, and use symbols shown in Figure 3B to indicate your expert opinion and advice about each formula;

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
4. Add your comment and advice on the Grade at which the topic should be taught to pre-collegiate students;
5. Add your general comments and advice in the empty space.

Step 2:
Rate the importance of each Section as a topic

Step 1:
Look at the formulas and check
the pre-requisite math and science items

Figure 3A. Step-by-step procedures proposed for the review and validation of data.

Figure 3B. Likert Scale (top) and symbols to be used for the expression of expert opinion and offer of advice.

Notes about the Statics Analytic Principles and Formulas

The leftmost column in the Statics Topic List (Engineering Topics Mathematics and Science Pre-requisite Completion Chart for the Subject of Statics) contains

1. The titles of each section under a particular chapter in the selected textbook, which in general represent particular sets of statics related engineering analytic and predictive principles, in a qualitative and explanatory way;
2. Computational formulas, which symbolically represent the above engineering analytic and predictive principles, in a quantitative and mathematical way.

As shown in Figure 3B, the formulas extracted from the selected textbook might by categorized into five groups, corresponding to the five different symbols shown in Figure 3B, which could be used by the above-mentioned professors from the University of Georgia and other schools to indicate their expert opinions and advices about each formula:

1. Formulas that engineering professors actually teach in classroom lectures and that practicing engineers use in engineering design projects: These are the important ones to be included in a potentially viable K-12 engineering curriculum that shall be based on cohesive and systemic mastery of engineering analytic and predictive principles and skills. For any of these formulas, a box could be used together with a number representing its order of importance according to the five-point Likert Scale ($1=$ Totally Unimportant, $2=$ Not So Important, $3=$ Might Be Important, $4=$ Important, or $5=$ Very Important).
2. Formulas that are rarely used in either classroom lectures or in field practice, but are used by the original discoverer of a particular set of analytic principles to derive other formulas that are actually used in classroom lecture or in field practice: Some of these "intermediate" formulas might not be used often, in other words, they are "rarely taught or used." For any of these formulas, a strikethrough could be used. If a big enough percentage of participants (maybe 85% or above) place a strikethrough on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. Interestingly enough, in some cases, rarely used calculus-based "intermediate" formulas are used to derive a final one that is based on
pre-calculus mathematics skills and is actually used in most homework assignments and design projects; in this case, if the "intermediate" formulas are removed from consideration, then the entire topic of fluid mechanics could be re-classified as appropriate for $9^{\text {th }}$ Grade. For example, in fluid mechanics, the main formula $\vec{F}=m \vec{a}$ and
$p+\frac{1}{2} \rho V^{2}+\gamma z=$ constant along a streamline (Bernoulli Equation) do not need calculus, and thus, could be taught to $9^{\text {th }}$
Grade students. This type of formulas will make the list shorter and shorter as the proposed Delphi study moves to the next round of survey. Some of these formulas might not be in the selected textbook; I derived them for fun, sometimes with the help of my former engineering professor, Dr. Samuel Landsberger, at California State University Los Angeles.
3. Formulas that are particular to certain conditions and in real classroom lectures or field practice are, for all practical purposes, are close to be "never used:" For any of these formulas, a double-strikethrough could be used. If a big enough percentage of participants (maybe 75% or above) place a double-strikethrough on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. This type of formulas will also make the list shorter and shorter as the proposed Delphi study moves to the next round of survey.
4. Formulas that even experienced university engineering professors or practicing engineers might "not understand:" This is amazing but totally correct and yes, absolutely normal! There are formulas that even experienced professors might say "I do not understand this" or "I need to read the context in the book to figure this out." For any of these formulas, the participants should generally not seek to understand them (doing so does not serve the purpose of studying the relative importance of each computational formula); but instead, a question mark (?) could be used. If a big enough percentage of participants (maybe 65% or above) place a question mark (?) on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. Indeed, it makes little sense to include this type of formulas to a potentially viable K12 engineering curriculum. This type of formulas will also make the list shorter and shorter as the proposed Delphi study moves to the next round of survey. Some of these formulas might not be in the selected textbook; I derived them for fun, sometimes with the help of my former engineering professor, Dr. Samuel Landsberger, at California State University Los Angeles.

Student: Edward Locke, University of Georgia
5. Formulas that are wrong for any reasons (my typing errors, or the authors' errors, etc.): For any of these formulas, a cross (X) could be used and the correct formulas should be given if possible. The correction would be included in the survey forms for the subsequent rounds of the four-round five-point Likert Scale Delphi study.

For convenience of statistic analysis of expert opinions and advice, it is requested that all participants print each letter of their comment legibly and separately, using fonts commonly used in engineering notebooks.

Statics Topics List
Engineering Topics Mathematics and Science Pre-requisite Completion Chart for the Subject of Statics

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 1: Introduction				
1.1: What Is Mechanics?	[coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B)	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C)	$9^{\text {th }}$	$9^{\text {th }}$
1.2: Fundamental Concepts and Principles $\vec{a}=\frac{\vec{F}}{m} \Rightarrow \vec{F}=m \vec{a} \quad \vec{F}_{A B}=-\vec{F}_{B A} \quad \vec{F}=G \frac{m_{1} m_{2}}{r^{2}}$	[measurement: time] (M2M2) $\rightarrow 2^{\text {nd }}$ (2C) [Parallelogram Law for the Addition of Force/Vector Graphics] (MA3A10) $\rightarrow 11^{\text {th }}(2 \mathrm{H})$ \rightarrow To be taught as a special math topic	[Newton's $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ Laws] (SP1) $\rightarrow 9^{\text {th }}$ (3C) [acceleration] (S8P3) \rightarrow 8th (3C) [Newton's Law of Gravitation] (S8P5) $\rightarrow 8^{\text {th }}$ (3C) [scientific inquiry] (S7CS9) $\rightarrow 7^{\text {th }}$ (3B)		
1.3: Systems of Units	[unit conversion] (M6M1) $\rightarrow 6^{\text {th }}$ (2C)	N/A	$6^{\text {th }}$	
1.4: Conversion from One System of Units to Another				
1.5: Method of Problem Solution	[problem-solving] (M3N5) $\rightarrow 3^{\text {rd }}$ (2A)	N/A	$3^{\text {rd }}$	
1.6: Numerical Accuracy	[percent] (M5N5) $\rightarrow 5^{\text {th }}$ (2A)	N/A	$5^{\text {th }}$	
Chapter 2: Statics of Particles				
2.1: Introduction	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A)	$4^{\text {th }}$	$9^{\text {th }}$
Forces in a Plane	$\begin{gathered} (\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A}), \text { or }(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A}) \\ {\left[\text { coordinate system] }(\mathrm{M} 4 \mathrm{G} 3) \rightarrow 4^{\text {th }}(2 \mathrm{~B})\right.} \end{gathered}$			
2.3: Vectors	[vector graphics] (MA3A10) $\rightarrow 9^{\text {th }}$ (2H)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
2.4: Addition of Vectors	\rightarrow To be taught as a special math topic			
2.5: Resultant of Several Concurrent Forces				
2.6: Resolution of a Force into Components	[vector graphics] (MA3A10) $\rightarrow 9^{\text {th }}$ (2H)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P3}) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
2.7: Rectangular Components of a Force. Unit Vectors	[trigonometric functions] (MA2G2) $\rightarrow 9^{\text {th }}$ (2F)			
2.8: Addition of Forces by Summing \boldsymbol{x} and \boldsymbol{y} Components $\begin{aligned} & \vec{F}=F_{x} \hat{i}+F_{y} \hat{j} \quad F_{x}=F \cos \theta \\ & F_{y}=F \sin \theta \quad \tan \theta=\frac{F_{y}}{F_{x}} \quad F=\sqrt{F_{x}^{2}+F_{y}^{2}} \end{aligned}$	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ (M2N3) $\rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or (M7N1) $\rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [square root] (M8N1) $\rightarrow 8^{\text {th }}(2 \mathrm{~A})$ [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}(2 \mathrm{~B})$	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}$ (3C)	$8^{\text {th }}$	
$\begin{aligned} & \text { 2.9: Equilibrium of a Particle } \\ & R=\sum F=F_{1}+F_{2}+\ldots=0 \Rightarrow R_{x}=\sum F_{x}=0 \quad R_{y}=\sum F_{y}=0 \\ & R_{z}=\sum F_{z}=0 \end{aligned}$	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(2 \mathrm{C})$	$9^{\text {th }}$	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 2: Statics of Particles (Continued)				
2.10: Newton's First Law of Motion	[four operations] (M1N3) $\rightarrow 1^{\text {st }}$ (2A) +	[Newton's $1^{\text {st }}, 2^{\text {nd }}$ and 3 ${ }^{\text {rd }}$ Laws] (SP1) $\rightarrow 9^{\text {th }}$ (3C)	$9^{\text {th }}$	$9^{\text {th }}$
2.11: Problems Involving the Equilibrium of a Particle. Free-Body Diagrams	$(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or (M7N1) $\rightarrow 7^{\text {th }}(2 \mathrm{~A})$	[acceleration] (S8P3) \rightarrow 8th (3C)		
Forces in Space 2.12: Rectangular Components of a Force in Space $F_{y}=F \cos \theta_{y} \quad F_{h}=F \sin \theta_{y}$ $F_{x}=F_{h} \cos \phi=F \sin \theta_{y} \cos \phi \quad F_{z}=F_{h} \sin \phi=F \sin \theta_{y} \sin \phi$ $F^{2}=F_{y}+F_{h}=F_{y}+F_{x}+F_{z} \rightarrow F=\sqrt{F_{x}+F_{y}+F_{z}}$ $F_{x}=F \cos \theta_{x} \quad F_{y}=F \cos \theta_{y} \quad F_{z}=F \cos \theta_{z} \quad\left(0^{\circ}<\theta_{x, y, z}<180^{\circ}\right)$ $\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k}$ $\vec{F}=F\left(\cos \theta_{x} \hat{i}+\cos \theta_{y} \hat{j}+\cos \theta_{z} \hat{k}\right)$ $\cos \theta_{x}=\frac{F_{x}}{F}=\frac{d_{x}}{d}=\frac{R_{x}}{R} \quad \cos \theta_{y}=\frac{F_{y}}{F}=\frac{d_{y}}{d}=\frac{R_{y}}{R} \quad \cos \theta_{z}=\frac{F_{z}}{F}=\frac{d_{z}}{d}=\frac{R_{z}}{R}$ $\theta_{x(y, z)}=\cos ^{-1} \frac{F_{x(y, z)}}{F}=\cos ^{-1} \frac{d_{x(y, z)}}{d} \quad F=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$ $\hat{\lambda}=\cos \theta_{x} \hat{i}+\cos \theta_{y} \hat{j}+\cos \theta_{z} \hat{k} \quad \hat{\lambda}=\frac{\vec{F}}{F} \quad \hat{i}=\frac{d_{x}}{d} \quad \hat{j}=\frac{d_{y}}{d} \quad \hat{k}=\frac{d_{z}}{d}$ $\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z}=1 \rightarrow \hat{\lambda}_{x}^{2}+\hat{\lambda}_{y}^{2}+\hat{\lambda}_{z}^{2}=1$	```[four operations] (M1N3) \(\rightarrow 1^{\text {st }}(2 \mathrm{~A})+\) \((\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})\), or \((\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})\) [square root] (M8N1) \(\rightarrow 8^{\text {th }}(2 \mathrm{~A})\) [trigonometric functions] (MA2G2) \(\rightarrow 10^{\text {th }}(2 \mathrm{~F})\) \(\rightarrow\) To be taught as a special math topic [coordinate system] (M4G3) \(\rightarrow 4^{\text {th }}\) (2B)```	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 2: Statics of Particles (Continued)				
2.13: Force Defined by Its Magnitude and Two Points on Its Line of Action $\begin{aligned} & \overrightarrow{M N}=d_{x} \hat{i}+d_{y} \hat{j}+d_{z} \hat{k} \\ & \hat{\lambda}=\frac{\overrightarrow{M N}}{M N}=\frac{1}{d}\left(d_{x} \hat{i}+d_{y} \hat{j}+d_{z} \hat{k}\right) \\ & d_{x(y, z)}=x(y, z)_{2}-x(y, z)_{1} \quad d=\sqrt{d_{x}^{2}+d_{y}^{2}+d_{z}^{2}} \\ & \vec{F}=F \hat{\lambda}=\frac{F}{d}\left(d_{x}^{2} \hat{i}+d_{y}^{2} \hat{j}+d_{z}^{2} \hat{k}\right) \\ & F_{x}=\frac{F d_{x}}{d} \quad F_{y}=\frac{F d_{y}}{d} \quad F_{z}=\frac{F d_{z}}{d} \end{aligned}$	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ (M2N3) $\rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [square root] $(\mathrm{M} 8 \mathrm{~N} 1) \rightarrow 8^{\text {th }}(1 \mathrm{~A})$ [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math htopic [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}(2 \mathrm{~B})$	$\begin{aligned} & {[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \\ & {\left[\text { Newton's } 1^{\text {st }}, 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { Laws }\right](\mathrm{SP} 1) \rightarrow 9^{\text {th }}(3 \mathrm{C})} \end{aligned}$	$9^{\text {th }}$	$9^{\text {th }}$
2.14: Addition of Concurrent Forces in Space $\begin{aligned} & \vec{R}=\sum \vec{F} \quad R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}} \\ & R_{x} \hat{i}+R_{y} \hat{j}+R_{z} \hat{k}=\left(\sum F_{x}\right) \hat{i}+\left(\sum F_{y}\right) \hat{j}+\left(\sum F_{z}\right) \hat{k} \end{aligned}$	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ (M2N3) $\rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [square root] (M8N1) $\rightarrow 8^{\text {th }}(2 \mathrm{~A})$ [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}(2 \mathrm{~B})$	$\begin{aligned} & {[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\mathrm{th}}(3 \mathrm{C})} \\ & {\left[\text { Newton's } 1^{\text {st }}, 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { Laws }\right](\mathrm{SP} 1) \rightarrow 9^{\text {th }}(3 \mathrm{C})} \end{aligned}$	$9^{\text {th }}$	
2.15: Equilibrium of a Particle in Space	[coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B) [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [linear algebra](MA2A6) (MA2A7) (MA2A8) (MA2A9) $\rightarrow 10^{\text {th }}$ (2G) \rightarrow To be taught as a special math topic	$\begin{aligned} & {[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \\ & {\left[\text { Newton's } 1^{\text {st }}, 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { Laws }\right](\mathrm{SP} 1) \rightarrow 9^{\text {th }}(3 \mathrm{C})} \end{aligned}$	$9^{\text {th }}$	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent Systems of Forces				
3.1: Introduction	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A)	$6^{\text {th }}$	$9^{\text {th }}$
3.2: External and Internal Forces	(M2N3) $\rightarrow 2^{\text {nd }}$ (2A)	[motion] (SKP2) \rightarrow K (3A)		
3.3: Principle of Transmissibility. Equivalent Forces	[geometry: point, axis/line, 3D body] (M6G1) (M6G2) (M6M3) $\rightarrow 6^{\text {th }}$ (2B)			
3.4: Vector Product of Two Vectors $\vec{V}=\vec{P} \times \vec{Q} \quad V=P Q \sin \theta \quad \vec{V} \perp \vec{P} \quad \vec{V} \perp \vec{Q} \quad \vec{V} \perp$ Plane $_{\vec{P}, \vec{Q}}$ $\begin{aligned} & \vec{P} \times\left(\vec{Q}_{1}+\vec{Q}_{2}\right)=\vec{P} \times \vec{Q}_{1}+\vec{P} \times Q_{2} \quad(\vec{P} \times \vec{Q}) \times \vec{S} \neq \vec{P} \times(\vec{Q} \times \vec{S}) \\ & \vec{V}=\vec{Q} \times \vec{P}=-(\vec{P} \times \vec{Q}) \quad \vec{Q} \times \vec{P} \neq \vec{P} \times \vec{Q} \quad \vec{P} \times \vec{Q}=-\vec{V} \\ & \vec{P} \times\left(\vec{Q}_{1}+Q_{2}\right)=\vec{P} \times \vec{Q}_{1}+\vec{P} \times Q_{2} \quad \vec{Q} \times \vec{P} \neq \vec{P} \times \vec{Q} \\ & \vec{V}=\vec{Q} \times \vec{P}=-(\vec{P} \times \vec{Q}) \vec{P} \times \vec{Q}=-\vec{V} \quad \vec{V}=\vec{P} \times \vec{Q} \quad(\vec{P} \times \vec{Q}) \times \vec{S} \neq \vec{P} \times(\vec{Q} \times \vec{S}) \end{aligned}$	[trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [cross product] \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C) [motion] (SKP2) \rightarrow K (3A)	$9^{\text {th }}$	
3.5: Vector Products Expressed in Terms of Rectangular Components $\begin{aligned} & \hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0 \quad \hat{i} \times \hat{j}=\hat{k} \quad \hat{j} \times \hat{k}=\hat{i} \quad \hat{k} \times \hat{i}=\hat{j} \\ & \hat{i} \times \hat{k}=-\hat{j} \quad \hat{j} \times \hat{i}=-\hat{k} \quad \hat{k} \times \hat{j}=-\hat{i} \\ & \vec{P}=P_{x} \hat{i}+P_{y} \hat{j}+P_{z} \hat{k} \quad \vec{Q}=Q_{x} \hat{i}+Q_{y} \hat{j}+Q_{z} \hat{k} \\ & \vec{V}=\vec{P} \times \vec{Q}=\left\|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ P_{x} & P_{y} & P_{z} \\ Q_{x} & Q_{y} & Q_{z} \end{array}\right\|=V_{x} \hat{i}+V_{y} \hat{j}+V_{z} \hat{k} \\ & V_{x}=P_{y} Q_{z}-P_{z} Q_{y} \quad V_{y}=-\left(P_{x} Q_{z}-P_{z} Q_{x}\right)=P_{z} Q_{x}-P_{x} Q_{z} \\ & V_{z}=P_{x} Q_{y}-P_{y} Q_{x} \end{aligned}$	```[trigonometric functions] (MA2G2) \(\rightarrow 10^{\text {th }}\) (2F) [cross product] \(\rightarrow\) To be taught as a special math topic [dot product] \(\rightarrow\) To be taught as a special math topic```	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)				
3.6: Moment of a Force about a Point $\begin{aligned} & \vec{M}_{0}=\vec{r} \times \vec{F} \quad M_{0}=r F \sin \theta=F d \\ & \vec{r}=\vec{v}_{\text {position }}^{O \rightarrow A} \quad \theta=L_{\vec{r} \rightarrow \vec{F}} \\ & \vec{M}_{0}=\vec{r} \times \vec{F}=\left\|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{array}\right\|=M_{x} \hat{i}+M_{y} \hat{j}+M_{z} \hat{k} \\ & M_{x}=y F_{z}-z F_{y} \\ & M_{y}=-\left(x F_{z}-z F_{x}\right)=z F_{x}-x F_{z} \quad M_{z}=x F_{y}-y F_{x} \end{aligned}$	[four operations] $(\mathrm{M} 1 \mathrm{~N} 3) \rightarrow 1^{\text {st }}(1 \mathrm{~A})+(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ [geometry: point, axis/line, 3D body] (M6G1) (M6G2) (M6M3) $\rightarrow 6^{\text {th }}(2 \mathrm{~B})$ [lcross product] \rightarrow To be taught as a special math topic [dot product] \rightarrow To be taught as a special math topic $[$ linear algebra](MA2A6) (MA2A7) (MA2A8) (MA2A9) $\rightarrow 10^{\text {th }}(2 \mathrm{G})$ \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	$9^{\text {th }}$
3.7: Varignon's Theorem $\vec{r} \times\left(\vec{F}_{1}+\vec{F}_{2}+\ldots\right)=\vec{r} \times \vec{F}_{1}+\vec{r} \times \vec{F}_{2}+\ldots$	[four operations](M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$$[$ cross product] \rightarrow To be taught as a special mathtopic[dot product] \rightarrowTo be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
3.8: Rectangular Components of the Moment of a Force $\begin{aligned} & \vec{M}_{B}=\vec{r}_{A / B} \times \vec{F}=\left\|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ x_{A / B} & y_{A / B} & z_{A / B} \\ F_{x} & F_{y} & F_{z} \end{array}\right\| \\ & \vec{r}_{A / B}=x_{A / B} \hat{i}+y_{A / B} \hat{j}+z_{A / B} \hat{k} \\ & x_{A / B}=x_{A}-x_{B} \quad y_{A / B}=y_{A}-y_{B} \quad z_{A / B}=z_{A}-z_{B} \end{aligned}$	[four operations](M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ $[$ cross product $] \rightarrow$ To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P3}) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)				
3.9: Scalar Product of Two Vectors $\begin{aligned} & \vec{P} \bullet \vec{Q}=P Q \cos \theta=P_{x} Q_{x}+P_{y} Q_{y}+P_{z} Q_{z} \quad \theta=\angle_{\vec{P} \rightarrow \bar{Q}} \\ & \vec{P} \bullet \vec{Q}=\vec{Q} \bullet \vec{P} \quad \vec{P} \bullet\left(\vec{Q}_{1}+\vec{Q}_{2}\right)=\vec{P} \bullet \vec{Q}_{1}+\vec{P} \bullet \vec{Q}_{2} \\ & P_{O L}=\vec{P} \bullet \hat{\lambda}=P_{x} \cos \theta_{x}+P_{y} \cos \theta_{y}+P_{z} \cos \theta_{z} \end{aligned}$ (More formulas on p. pp. 94-95)	[four operations] $($ M1N3 $) \rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ $[$ dot product $] \rightarrow$	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	$9^{\text {th }}$
3.10: Mixed Triple Product of Three Vectors $\vec{S} \bullet(\vec{P} \times \vec{Q})=\left\|\begin{array}{lll} S_{x} & S_{y} & S_{z} \\ P_{x} & P_{y} & P_{z} \\ Q_{x} & Q_{y} & Q_{z} \end{array}\right\|$	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ [cross product $] \rightarrow$ To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
3.11: Moment of a Force about a Given Axis $M_{O L}=\hat{\lambda} \bullet \vec{M}_{O}=\hat{\lambda} \bullet(\vec{r} \times \vec{F})=\left\|\begin{array}{ccc} \lambda_{x} & \lambda_{y} & \lambda_{z} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{array}\right\|$ (More formulas on p. pp. 98)	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ $[$ dot product $] \rightarrow$ To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
3.12: Moment of a Couple $\vec{M}=\vec{r} \times \vec{F} \quad M=r F \sin \theta=F d$	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ $\left[\right.$ trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [cross product] \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C) [motion] (SKP2) \rightarrow K (3A) [lever] (S4P3) $\rightarrow 4^{\text {th }}$ (3A)	$9^{\text {th }}$	
3.13: Equivalent Couples $F_{1} d_{1}=F_{2} d_{2}$	[four operations] $\left(\right.$ M1N3 $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ [geometry: point, axis/line, 3D body] (M6G1) $(\mathrm{M} 6 \mathrm{G} 2)(\mathrm{M} 6 \mathrm{M} 3) \rightarrow 6^{\text {th }}(2 \mathrm{~B})$	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}$ (3C) [motion] (SKP2) \rightarrow K (3A) [lever] (S4P3) $\rightarrow 4^{\text {th }}$ (3A)	$6^{\text {th }}$	

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)				
3.14: Addition of Couples $\vec{M}=\vec{r} \times \vec{R}=\vec{r} \times\left(\vec{F}_{1}+\vec{F}_{2}\right)=\vec{r} \times \vec{F}_{1}+\vec{r} \times \vec{F}_{2} \quad \vec{M}=\vec{M}_{1}+\vec{M}_{2}$	[four operations](M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ [cross product] \rightarrowTo be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C)	$9^{\text {th }}$	$9^{\text {th }}$
3.15: Couples Can Be Represented by Vectors	[vector graphics] (MA3A10) $\rightarrow 11^{\text {th }}$ (2H) \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C)	$9^{\text {th }}$	
3.16: Resolution of a Given Force Into a Force at O and a Couple $\vec{M}_{O^{\prime}}=\vec{r}^{\prime} \times \vec{F}=(\vec{r}+\vec{s}) \times \vec{F}=\vec{r} \times \vec{F}+\vec{s} \times \vec{F} \quad \vec{M}_{O^{\prime}}=\vec{M}_{O}+\vec{s} \times \vec{F}$	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ [cross product] \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
3.17: Reduction of a System of Forces to One Force and One Couple $\begin{aligned} & \vec{R}=\sum \vec{F} \quad \vec{M}_{O}^{R}=\sum \vec{M}_{O}=\sum(\vec{r} \times \vec{F}) \\ & \vec{M}_{O^{\prime}}^{R}=\vec{M}_{O}+\vec{s} \times \vec{R} \quad \vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \\ & \vec{F}=F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k} \quad \vec{R}=R_{x} \hat{i}+R_{y} \hat{j}+R_{z} \hat{k} \\ & \vec{M}_{O}^{R}=M_{x}^{R} \hat{i}+M_{y}^{R} \hat{j}+M_{z}^{R} \hat{k} \end{aligned}$	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+($ M2N3 $) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ [cross product $] \rightarrow$ To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
3.18: Equivalent Systems of Forces $\sum \vec{F}=\sum \vec{F}^{\prime} \quad \& \quad \sum \vec{M}_{0}=\sum \vec{M}_{0}$ $\sum \vec{F}=\sum \vec{F}^{\prime}$ and $\sum \vec{M}_{o}=\vec{M}_{o}{ }^{\prime}$ $\sum F_{x}=\sum F_{x}^{\prime} \quad \sum F_{y}=\sum F^{\prime} y_{y} \quad \sum F_{z}=\sum F^{\prime}{ }_{z}$ $\sum M_{x}=\sum M_{x}^{\prime} \quad \sum M_{y}=\sum M_{y}^{\prime} \quad \sum M_{z}=\sum M_{z}^{\prime}$	$\begin{gathered} \text { [four operations] } \\ (\mathrm{M} 1 \mathrm{~N} 3) \rightarrow 1^{\text {st }}(1 \mathrm{~A})+(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A}) \\ {\left[\text { coordinate system] }(\mathrm{M} 4 \mathrm{G} 3) \rightarrow 4^{\text {th }}(2 \mathrm{~B})\right.} \end{gathered}$	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	$8^{\text {th }}$	
3.19: Equipollent Systems of Vectors	[vector graphics] (MA3A10) $\rightarrow 11^{\text {th }}$ (2H) \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
3.20: Further Reduction of a System of Forces	[coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$8^{\text {th }}$	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)				
3.21: Reduction of a System of Forces to a Wrench $\begin{aligned} & p=\frac{M_{1}}{R} \quad M_{1}=\frac{\vec{R} \bullet \vec{M}_{O}^{R}}{R} \quad p=\frac{M_{1}}{R}=\frac{\vec{R} \bullet \vec{M}_{O}^{R}}{R^{2}} \\ & \vec{M}_{1}=p \vec{R} \rightarrow \begin{array}{l} \vec{M}_{1}+\vec{r} \times \vec{R}=\vec{M}_{O}^{R} \\ p \vec{R}+\vec{r} \times \vec{R}=\vec{M}_{O}^{R} \end{array} \end{aligned}$	[four operations] $\left(\right.$ M1N3 $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$ [geometry: point, axis/line, 3D body] (M6G1) $($ M6G2 $)($ M6M3 $) \rightarrow 6^{\text {th }}(2 \mathrm{~B})$ [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [dot product] \rightarrow To be taught as a special math topic	$\begin{gathered} {[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \\ \text { [motion] }(\mathrm{SKP} 2) \rightarrow \mathrm{K}(2 \mathrm{~A}) \\ {[\text { lever }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(2 \mathrm{~A})} \end{gathered}$	$9^{\text {th }}$	$9^{\text {th }}$
Chapter 4: Equilibrium of Rigid Bodies				
4.1: Introduction $\begin{aligned} & \sum \vec{F}=0 \quad \sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum F_{z}=0 \\ & \sum \vec{M}_{o}=\sum(\vec{r} \times \vec{F})=0 \quad \sum M_{x}=0 \quad \sum M_{y}=0 \quad \sum M_{z}=0 \end{aligned}$	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}(1 \mathrm{~A})$ or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}(2 \mathrm{~B})$	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C) [Newton's $3^{\text {rd }}$ Law: Action and Reaction] $(S P 1) \rightarrow 9^{\text {th }}(3 C)$	$9^{\text {th }}$	$9^{\text {th }}$
4.2: Free-Body Diagram				
Equilibrium in Two Dimensions 4.3: Reactions at Supports and Connections for a TwoDimensional Structure				
4.4: Equilibrium of a Rigid Body in Two Dimensions $\begin{aligned} & F_{z}=0 \quad M_{x}=M_{y}=0 \quad M_{z}=M_{O} \\ & \sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{O}=0 \\ & \sum M_{A}=0 \quad \sum M_{B}=0 \quad \sum M_{C}=0 \end{aligned}$				
4.5: Statically Indeterminate Reactions. Partial Constraints 4.6: Equilibrium of a Two-Force Body 4.7: Equilibrium of a Three-Force Body				

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 4: Equilibrium of Rigid Bodies (Continued)				
Equilibrium in Three Dimensions 4.8: Equilibrium of a Rigid Body in Three Dimensions $\begin{array}{lll} \sum \vec{F}=0 & \sum \vec{M}_{o}=\sum(\vec{r} \times \vec{F})=0 \\ \sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\ \sum M_{x}=0 & \sum M_{y}=0 \quad \sum M_{z}=0 \end{array}$	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}$ (2E) \rightarrow To be taught as a special math topic [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}$ (3C) [Newton's $3^{\text {rd }}$ Law: Action and Reaction] $(\mathrm{SP} 1) \rightarrow 9^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	$9^{\text {th }}$
4.9: Reactions at Supports and Connections for a ThreeDimensional Structure				
Chapter 5: Distributed Forces: Centroids and Centers of Gravity				
5.1: Introduction	[coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B)	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C)	PS	PS
Areas and Lines 5.2: Center of Gravity of a Two-Dimensional Body Plate: $\sum F_{z}: W=\Delta W_{1}+\Delta W_{2}+\ldots+\Delta W_{n}$ $\sum M_{y}: \bar{x} W=x_{1} \Delta W+x_{2} \Delta W+\ldots+x_{n} \Delta W$ $\sum M_{x}: \quad \bar{y} W=y_{1} \Delta W+y_{2} \Delta W+\ldots+y_{n} \Delta W$ $W=\int d W \quad \bar{x} W=\int x d W \quad \bar{y} W=\int y d W$ Wire: $\quad \sum M_{y}: \bar{x} W=\sum x \Delta W \quad \sum M_{x}: \quad \bar{y} W=\sum y \Delta W$	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}(1 \mathrm{~A})$ or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [integration] $\rightarrow 12^{\text {th }}$ (To be taught)	[Newton's Law of Gravitation] (S8P5) $\rightarrow 8^{\text {th }}$ (3C)		
5.3: Centroids of Areas and Lines Plate: $\quad \Delta W=\gamma t \Delta A \quad W=\gamma t A \quad \bar{x} A=\int x d A \quad \bar{y} A=\int y d A$ Line: $\quad \Delta W=\gamma a \Delta L \quad \bar{x} L=\int x d L \quad \bar{y} L=\int y d L$	```[measurement: area, weight, thickness] (M6M1) (M6M2) \(\rightarrow 6^{\text {th }}\) (2C) [integration] \(\rightarrow 12^{\text {th }}\) (To be taught)```	$\begin{aligned} & {\left[\text { force }(\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \\ & {[\text { Newton's Law of Gravitation }](\mathrm{S} 8 \mathrm{P} 5) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \end{aligned}$	PS	

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 5: Distributed Forces: Centroids and Centers of Gravity (Continued)				
5.4: First Moments of Areas and Lines $\bar{x} A=Q_{y}=\int x d A \quad \bar{y} A=Q_{x}=\int y d A$	[integration] $\rightarrow 12^{\text {th }}$ (To be taught) [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B) [two-dimensional figures: circle, arc, triangle, ellipse, parabolic] (M1G1) (M1G2) $\rightarrow 1^{\text {st }}(1 \mathrm{~B})+$ (MA2G4) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [special two-dimensional figures: parabolic spandrel, general spandrel] \rightarrow To be taught as a special math topic	$\begin{aligned} & \text { [force] (S4P3) } \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C}) \\ & {\left[\text { Newton's Law of Gravitation] }(\mathrm{S} 8 \mathrm{P} 5) \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \end{aligned}$	PS	PS
5.5: Composite Plates and Wires $\begin{aligned} & \bar{X} \sum W=\sum \bar{x} W \quad \bar{Y} \sum W=\sum \bar{y} W \\ & Q_{y}=\bar{X} \sum A=\sum \bar{x} A \quad Q_{x}=\bar{Y} \sum A=\sum \bar{y} A \end{aligned}$	[coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B) [sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [measurement: area, weight, thickness] (M6M1) (M6M2) $\rightarrow 6^{\text {th }}$ (2C)	$\begin{aligned} & \text { [force] (S4P3) } \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C}) \\ & {\left[\text { Newton's Law of Gravitation] }(\mathrm{S} 8 \mathrm{P} 5) \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \end{aligned}$	PS	
5.6: Determination of Centroids by Integration $Q_{y}=\bar{x} A=\int \bar{x}_{e l} d A \quad Q_{x}=\bar{y} A=\int \bar{y}_{e l} d A$	[integration] $\rightarrow 12^{\text {th }}$ (To be taught) [coordinate system] (M4G3) $\rightarrow 4^{\text {hi }}(2 \mathrm{~B})$ [areas of geometric shapes: circle, triangle, etc.] $($ M5M1 $) \rightarrow 5^{\text {th }}$ and $(2 \mathrm{~B})($ M6M2 $) \rightarrow 6^{\text {th }}(2 \mathrm{C})$ [integration] $\rightarrow 12^{\text {th }}$ (To be taught) [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B) [areas of geometric shapes: circle, triangle, etc.] $(\mathrm{M} 5 \mathrm{M} 1) \rightarrow 5^{\text {th }} \text { and }(2 \mathrm{~B})(\mathrm{M} 6 \mathrm{M} 2) \rightarrow 6^{\text {th }}(2 \mathrm{C})$	$\begin{aligned} & {[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \\ & {\left[\text { Newton's Law of Gravitation] }(\mathrm{S} 8 \mathrm{P} 5) \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \end{aligned}$	PS	
5.7: Theorems of Pappus-Guldinus $A=2 \pi \bar{y} L \quad V=2 \pi \bar{y} A$	[integration: area of surface of revolution, curve, volume of body of revolution] $\rightarrow 12^{\text {th }}$ (To be taught)	$\begin{aligned} & {[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \\ & {\left[\text { Newton's Law of Gravitation] }(\mathrm{S} 8 \mathrm{P} 5) \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \end{aligned}$	PS	
5.8: Distributed Loads on Beams $W=\int_{O}^{L} W d x \quad W=\int d A=A \quad(O P) W=\int x d W \quad(O P) A=\int_{O}^{L} x d A$	[coordinate system] (M4G3) $\rightarrow 4^{\text {th }}(2 \mathrm{~B})$ $\quad[$ integration] $\rightarrow 12^{\text {th }}$ (To be taught) [areas of geometric shapes: circle, triangle, etc.] (M5M1) $\rightarrow 5^{\text {th }}$ and $(2 \mathrm{~B})(\mathrm{M} 6 \mathrm{M} 2) \rightarrow 6^{\text {th }}(2 \mathrm{C})$	$\begin{aligned} & {\left[\text { force }(\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \\ & {[\text { Newton's Law of Gravitation }](\mathrm{S} 8 \mathrm{P} 5) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \end{aligned}$	PS	
5.9: Forces on Submerged Surfaces $w=b p=b \gamma h$	[areas of geometric shapes: circle, triangle, etc.] (M5M1) $\rightarrow 5^{\text {th }}$ and (2B) (M6M2) $\rightarrow 6^{\text {th }}(2 \mathrm{C})$	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$\begin{aligned} & 8^{\text {th }} \\ & \rightarrow \\ & \text { PS } \end{aligned}$	

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 5: Distributed Forces: Centroids and Centers of Gravity (Continued)				
Volumes 5.10: Center of Gravity of a Three- Dimensional Body. Centroid of a Volume $\begin{aligned} & \bar{x} W=\int x d W \quad \bar{y} W=\int y d W \quad \bar{z} W=\int z d W \\ & \bar{x} V=\int x d V \quad \bar{y} V=\int y d V \quad \bar{z} V=\int z d V \end{aligned}$	[coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B) [volume: sphere, cone, pyramid] $(\mathrm{M} 5 \mathrm{M} 4) \rightarrow 5^{\text {th }}(1 \mathrm{~B})(\mathrm{M} 6 \mathrm{M} 3) \rightarrow 6^{\text {th }}(2 \mathrm{~B})$ $\left(\right.$ MA1G5) $\rightarrow 9^{\text {th }}(2 F)$ [volume: ellipsoid, paraboloid] \rightarrow To be taught as a special math topic [integration] $\rightarrow 12^{\text {th }}$ (To be taught) [integration: area of surface of revolution, curve, volume of body of revolution] $\rightarrow 12^{\text {th }}$ (To be taught)	$\begin{aligned} & {[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \\ & {\left[\text { Newton's Law of Gravitation] }(\mathrm{S} 8 \mathrm{P} 5) \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \end{aligned}$	PS	PS
5.11: Composite Bodies $\begin{aligned} & \bar{X} \sum W=\sum \bar{x} W \quad \bar{Y} \sum W=\sum \bar{y} W \quad \bar{Z} \sum W=\sum \bar{z} W \\ & \bar{X} \sum V=\sum \bar{x} V \quad \bar{Y} \sum V=\sum \bar{y} V \quad \bar{Z} \sum V=\sum \bar{z} V \end{aligned}$				
5.12: Determination of Centroids of Volumes by Integration $\bar{x} V=\int \bar{x}_{e l} d V \quad \bar{y} V=\int \bar{y}_{e l} d V \quad \bar{z} V=\int \bar{z}_{e l} d V \quad \bar{x} V=\int \bar{x}_{e l} d V$				
Chapter 6: Analysis of Structures				
6.1: Introduction	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [four operations] (M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow$ $2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B)	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C) [Newton's $3{ }^{\text {rd }}$ Law: Action and Reaction] $(\mathrm{SP} 1) \rightarrow 9^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	$9^{\text {th }}$
$\begin{aligned} & \text { Trusses } \\ & \text { 6.2: Definition of a Truss } \end{aligned}$				
6.3: Simple Trusses				
6.4: Analysis of Trusses by the Method of Joints				
6.5: Joints under Special Loading Conditions				
6.7: Analysis of Trusses by the Method of Sections				
6.8: Trusses Made of Several Simple Trusses				
Frames and Machines 6.9: Structures Containing Multiforce Members	[trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}$ (2F) [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B) [sigma notation] (M6N1) $\rightarrow 6^{\text {th }}(1 \mathrm{~A})$ or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C) [Newton's $3^{\text {rd }}$ Law: Action and Reaction] $(\mathrm{SP} 1) \rightarrow 9^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	
6.10: Analysis of a Frame				
6.11: Frames Which Cease to Be Rigid When Detached from Their Supports				

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 6: Analysis of Structures (Continued)				
6.12: Machines	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}(1 \mathrm{~A})$ or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B)	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C) [Newton's $3{ }^{\text {rd }}$ Law: Action and Reaction] $(\mathrm{SP} 1) \rightarrow 9^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	$9^{\text {th }}$
Chapter 7: Forces in Beams and Cables				
7.1: Introduction	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [integration] $\rightarrow 12^{\text {th }}$ (To be taught)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	PS	PS
7.2: Internal Forces in Members				
Beams 7.3: Various Types of Loading and Support				
7.4: Shear and Bending Moment in a Beam				
7.6: Relations among Load, Shear, and Bending Moment $\begin{aligned} & \frac{d V}{d x}=-w \\ & V_{D}-V_{C}=-\int_{x_{C}}^{x_{D}} w d x=-w x=-(\text { Area under load curve between } \mathrm{C} \text { an } \mathrm{D}) \\ & \frac{d M}{d x}=V \\ & M_{D}-M_{C}=\int_{x_{C}}^{x_{D}} V d x=-(\text { Area under shear curve between } \mathrm{C} \text { an } \mathrm{D}) \end{aligned}$	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [four operations] (M1N3) $\rightarrow 1^{\text {st }}(1 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [integration] $\rightarrow 12^{\text {th }}$ (to be taught) [differentiation] $\rightarrow 12^{\text {th }}$ (to be taught)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	PS	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 7: Forces in Beams and Cables (Continued)				
$\begin{aligned} & \text { Cables } \\ & \text { 7.7: Cables with Concentrated Loads } \\ & \hline \end{aligned}$	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	$8^{\text {th }}$	PS
7.8: Cables with Distributed Loads $T \cos \theta=T_{O} \quad T \sin \theta=W \quad T=\sqrt{T_{O}^{2}+W^{2}} \quad \tan \theta=\frac{W}{T_{O}}$	[trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$			
7.9: Parabolic Cable $y=\frac{w x^{2}}{2 T_{O}}$	$(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [square root] (M8N1) $\rightarrow 8^{\text {th }}(2 \mathrm{~A})$			
7.10: Catenary $\begin{aligned} & T=\sqrt{T_{O}^{2}+w^{2} s^{2}} \quad c=\frac{T_{O}}{w} \quad T_{O}=w c \quad W=w s \quad T=w \sqrt{c^{2}+s^{2}} \\ & d x=d s \cos \theta=\frac{T_{O}}{T} d s=\frac{w c d s}{w \sqrt{c^{2}+s^{2}}} \\ & x=\int_{O}^{S} \frac{d s}{\sqrt{1+\frac{s^{2}}{c^{2}}}}=c\left[\sinh ^{-1} \frac{s}{c}\right]_{O}^{S}=c \sinh ^{-1} \frac{s}{c} \\ & s=c \sinh \frac{x}{c} \quad y=c \cosh \frac{x}{c} \quad y^{2}-s^{2}=c^{2} \quad T_{O}=w c \quad W=w s \\ & T=w y \quad h=y_{A}=c \end{aligned}$	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [trigonometric functions] (MA2G2) $\rightarrow 9^{\text {th }}(2 \mathrm{~F})$ [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [square root] (M8N1) $\rightarrow 8^{\text {th }}$ (2A) [integration] $\rightarrow 12^{\text {th }}$ (to be taught) [differentiation] $\rightarrow 12^{\text {th }}$ (to be taught)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	PS	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 8: Friction				
8.1: Introduction	```[four operations] (M1N3) \(\rightarrow 1^{\text {st }}(2 \mathrm{~A})+\) \((\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})\), or (M7N1) \(\rightarrow 7^{\text {th }}(2 \mathrm{~A})\) [trigonometric functions] (MA2G2) \(\rightarrow 10^{\text {th }}\) (2F) \(\rightarrow\) To be taught as a special math topic [surface] (M6M4) \(\rightarrow 6^{\text {th }}\) (2B)```	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S8P3}) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$9^{\text {th }}$	PS
8.2: The Laws of Dry Friction. Coefficients of Friction $F_{m}=\mu_{s} N \quad F_{k}=\mu_{k} N$				
8.3: Angles of Friction $\begin{aligned} & \tan \phi_{s}=\frac{F_{m}}{N}=\frac{\mu_{s} N}{N} \rightarrow \tan \phi_{s}=\mu_{s} \\ & \tan \phi_{k}=\frac{F_{k}}{N}=\frac{\mu_{k} N}{N} \rightarrow \tan \phi_{k}=\mu_{k} \end{aligned}$				
8.4: Problems Involving Dry Friction				
8.5: Wedges				
8.6: Square-Threaded Screws $Q=P \frac{a}{r} \quad L=n P$				
8.7: Journal Bearings. Axle Friction $M=R r \sin \phi_{k} \approx R r \mu_{k} \quad r_{f}=r \sin \phi_{k} \approx r \mu_{k}$				
8.8: Thrust Bearings. Disk Friction $\Delta M=r \Delta F=\frac{r \mu_{k} P \Delta A}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)}$	[four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [integration] $\rightarrow 12^{\text {th }}$ (to be taught)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	PS	
$\begin{aligned} & M=\frac{\mu_{k} P}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)} \int_{0}^{2 \pi} \int_{R_{1}}^{R_{2}} r^{2} d r d \theta=\frac{\mu_{k} P}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)} \int_{0}^{2 \pi}\left[\frac{r^{2+1}}{2+1}\right]_{R_{1}}^{R_{2}} d \theta \\ & =\frac{\mu_{k} P}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)} \int_{0}^{2 \pi} \frac{1}{3}\left(R_{2}^{3}-R_{1}^{3}\right) d \theta \end{aligned}$				
Ring area: $\quad M=\frac{2}{3} \mu_{k} P \frac{R_{2}^{3}-R_{1}^{3}}{R_{2}^{2}-R_{1}^{2}} \quad$ Full circle: $\quad M=\frac{2}{3} \mu_{k} P R$				
8.9: Wheel Friction. Rolling Resistance $\operatorname{Pr}=W b$	$\begin{gathered} \text { [four operations] (M1N3) } \rightarrow 1^{\text {st }}(2 \mathrm{~A})+ \\ (\text { M2N3 }) \rightarrow 2^{\text {nd }}(2 \mathrm{~A}), \text { or }(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A}) \end{gathered}$	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$	$8^{\text {th }}$	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 8: Friction (Continued)				
8.10: Belt Friction $\ln \frac{T_{2}}{T_{1}}=\mu_{s} \beta \quad \frac{T_{2}}{T_{1}}=e^{\mu_{s} \beta}$ (For other formulas, refer to pp. 451-452)	[sigma notation] (M6N1) $\rightarrow 6^{\text {th }}$ (1A) or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [logarithmic functions] (MA2A4) $\rightarrow 10^{\text {th }}(2 \mathrm{E})$ \rightarrow To be taught as a special math topic [integration] $\rightarrow 12^{\text {th }}$ (to be taught) [differentiation] $\rightarrow 12^{\text {th }}$ (to be taught)	[force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S8P3) $\rightarrow 8^{\text {th }}(3 \mathrm{C})$	PS	PS

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 9: Distributed Forces: Moments of Inertia				
9.1: Introduction	[integration] $\rightarrow 12^{\text {th }}$ (to be taught)	[force] (S4P3) $\rightarrow 4^{\text {th }}$ (3A) or (S8P3) $\rightarrow 8^{\text {th }}$ (3C)	PS	PS
Moments of Inertia of Areas 9.2: Second Moment, or Moment of Inertia, of an Area $\begin{array}{ll} R=\int k y d A=k \int y d A & M=\int k y^{2} d A=k \int y^{2} d A \\ R=\int \gamma y d A=\gamma \int y d A & M_{x}=\int y^{2} d A=\gamma \int y^{2} d A \end{array}$	[differentiation] $\rightarrow 12^{\text {th }}$ (to be taught) [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ (M2N3) $\rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [area] (M3M3) (M3M4) $\rightarrow 3^{\text {rd }}$ (2B) [square root] (M8N1) $\rightarrow 8^{\text {th }}(2 \mathrm{~A})$	[power] (SP3) $\rightarrow 9^{\text {th }}$ (3C)		
9.3: Determination of the Moment of Inertia of an Area by Integration $\begin{array}{lll} I_{x}=\int y^{2} d A & I_{y}=\int x^{2} d A \quad d A=b d y & d I_{x}=y^{2} b d y \\ I_{x}=\int_{0}^{h} b y^{2} d y=\frac{1}{3} B H^{3} \quad d I_{x}=\frac{1}{3} y^{3} d x \quad d I_{y}=x^{2} d A=x^{2} y d x \end{array}$	[coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B) [areas of geometric shapes: circle, triangle] $(\mathrm{M} 5 \mathrm{M} 1) \rightarrow 5^{\mathrm{th}}(2 \mathrm{~B})$ [geometric shapes: ellipse] (MA2G4) $\rightarrow 10^{\text {th }}$ (2F) \rightarrow To be taught as a special math topic [three-dimensional bodies: thin rectangular			
9.4: Polar Moment of Inertia $\begin{aligned} & J_{O}=\int r^{2} d A=\int\left(x^{2}+y^{2}\right) d A=\int y^{2} d A+\int x^{2} d A \\ & J_{O}=I_{x}+I_{y} \end{aligned}$	plate, rectangular prism] (M5M4) $\rightarrow 5^{\text {th }}$ (2B) [three-dimensional bodies: slender rod, circular cylinder, cone] (M6M3) $\rightarrow 6^{\text {th }}$ (2B) [three-dimensional bodies: circular cone,			
9.5: Radius of Gyration of an Area $\begin{aligned} & I_{x}=k_{x}^{2} A \rightarrow k_{x}=\sqrt{\frac{I_{x}}{A}} \quad I_{y}=k_{y}^{2} A \rightarrow k_{y}=\sqrt{\frac{I_{y}}{A}} \\ & J_{O}=k_{O}^{2} A \rightarrow k_{O}=\sqrt{\frac{J_{O}}{A}} \end{aligned}$	sphere] (M2G2) $\rightarrow 2^{\text {nd }}$ (2B) [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}$ (2F) \rightarrow To be taught as a special math topic [cross product] \rightarrow To be taught as a special math topic			
9.6: Parallel-Axis Theorem $\begin{aligned} & I=\int y^{2} d A \\ & I=\int y^{2} d A=\int\left(y^{\prime}+d\right)^{2} d A=\int y^{\prime 2} d A+2 d \int y^{\prime} d A+d^{2} \int d A \\ & I=\bar{I}+A d^{2} \quad k^{2}=\bar{k}^{2}+d^{2} \quad J_{O}=\bar{J}_{O}+A d^{2} \quad \text { or } \quad k_{O}^{2}=\bar{k}_{O}^{2}+d^{2} \end{aligned}$	[gradient: "del"] $\rightarrow 12^{\text {th }}$ (to be taught) [linear algebra] (MA2A6) (MA2A7) (MA2A8) $(\mathrm{MA} 2 \mathrm{~A} 9) \rightarrow 10^{\text {th }}(2 \mathrm{G})$			

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Topics List (Continued).

Statics Topics List (Continued).

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 9: Distributed Forces: Moments of Inertia (Continued)				
9.18: Determination of the Principal Axes and Principal Moments of Inertia of a Body of Arbitrary Shape $\begin{aligned} & \nabla f=(2 K) \vec{r} \\ & K=\text { constant } \\ & \vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \\ & f(x, y, z)=I_{x} x^{2}+I_{y} y^{2}+I_{z} z^{2}-2 I_{x y} x y-2 I_{y z} y z-2 I_{z x} z x-1 \end{aligned}$ $\left\|\begin{array}{ccc} I_{x}-K & -I_{x y} & -I_{z x} \\ -I_{x y} & I_{y}-K & -I_{y z} \\ -I_{z x} & -I_{y z} & I_{z}-K \end{array}\right\|=0$ (More calculus- and linear algebra- based formulas can be found n pages 534-535)	[integration] $\rightarrow 12^{\text {th }}$ (to be taught) [differentiation] $\rightarrow 12^{\text {th }}($ to be taught $)$ [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+$ $(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(2 \mathrm{~A})$, or (M7N1) $\rightarrow 7^{\text {th }}(2 \mathrm{~A})$ [area] (M3M3) $(\mathrm{M} 3 \mathrm{M} 4) \rightarrow 3^{\text {rd }}(2 \mathrm{~B})$ [square root] (M8N1) $\rightarrow 8^{\text {th }}(1 \mathrm{~A})$ [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}(2 \mathrm{~B})$ [areas of geometric shapes: circle, triangle] (M5M1) $\rightarrow 5^{\text {th }}(2 \mathrm{~B})$ [geometric shapes: ellipse] (MA2G4) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [three-dimensional bodies: thin rectangular plate, rectangular prism] (M5M4) $\rightarrow 5^{\text {th }}(2 \mathrm{~B})$ [three-dimensional bodies: slender rod, circular cylinder, cone] (M6M3) $\rightarrow 6^{\text {th }}(2 \mathrm{~B})$ [three-dimensional bodies: circular cone, sphere] (M2G2) $\rightarrow 2^{\text {nd }}(2 \mathrm{~B})$ [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [cross product] \rightarrow To be taught as a special math topic [partial differentiation] $\rightarrow 12^{\text {th }}($ to be taught $)$ [gradient: "del"] $\rightarrow 12^{\text {th }}$ to be taught) [linear algebra] (MA2A6) (MA2A7) (MA2A8) (MA2A9) $\rightarrow 10^{\text {th }}(2 \mathrm{G})$ \rightarrow To be taught as a special math topic	$[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or }(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$ $\text { [power] (SP3) } \rightarrow 9^{\text {th }}(\text { (3C) }$	PS	PS

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 10: Method of Virtual Work				
10.1: Introduction		$\begin{gathered} \hline[\text { force }](\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or (S8P3) } \rightarrow 8^{\text {th }}(3 \mathrm{C}) \\ {[\text { work }](\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \end{gathered}$	PS	PS
10.2: Work of a Force $d U=\vec{F} \bullet d \vec{x} \quad d U=F d s \cos \alpha \quad d U=M d \theta$		[potential energy] (SP3) $\rightarrow 9^{\text {th }}$ (3C)		
10.3: Principle of Virtual Work $\begin{aligned} & \delta U=\vec{F}_{1} \bullet \delta \vec{r}+\vec{F}_{2} \bullet \delta \vec{r}+\ldots+\vec{F}_{n} \bullet \delta \vec{r} \\ & =\left(\vec{F}_{1}+\vec{F}_{2}+\ldots+\vec{F}_{n}\right) \bullet \delta \vec{r} \rightarrow \delta U=\vec{R} \bullet \delta \vec{r} \end{aligned}$				
10.4: Applications of the Principle of Virtual Work $x_{B}=2 \ell \sin \theta \quad y_{C}=\ell \cos \theta$ $\delta x_{B}=2 \ell \cos \theta \delta \theta \quad \delta y_{C}=-\ell \sin \theta \delta \theta$ $\delta U=\delta U_{Q}+\delta U_{P}=-Q \delta x_{B}-P \delta y_{C}$ $=-2 Q \ell \cos \theta \delta \theta+P \ell \sin \theta \delta \theta$ $\delta U=0 \rightarrow$ $2 Q \ell \cos \theta \delta \theta=P \ell \sin \theta \delta \theta \rightarrow Q=\frac{1}{2} P \tan \theta$ $B_{x}=-\frac{1}{2} P \tan \theta$				
10.5: Real Machines. Mechanical Efficiency $\begin{aligned} & \delta U=-Q \delta x_{B}-P \delta y_{C}-F \delta x_{B} \\ & =-2 Q \ell \cos \theta \delta \theta+P \ell \sin \theta \delta \theta-\mu P \ell \cos \theta \delta \theta \\ & \delta U=0 \rightarrow 2 Q \ell \cos \theta \delta \theta=P \ell \sin \theta \delta \theta-\mu P \ell \cos \theta \delta \theta \rightarrow \\ & \eta=\frac{\text { output work }}{\text { input work }}=\frac{2 Q \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta} \\ & \eta=\frac{2\left(\frac{1}{2} P(\tan \theta-\mu)\right) \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta}=\frac{P(\tan \theta-\mu) \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta}=1-\mu \cot \theta \end{aligned}$				

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 10: Method of Virtual Work (Continued)				
10.6: Work of a Force during a Finite Displacement $\begin{aligned} & d U=\vec{F} \bullet d \vec{r} \rightarrow U_{1 \rightarrow 2}=\int_{A_{1}}^{A_{2}} \vec{F} \bullet d \vec{r} \\ & d U=F d s \cos \alpha \rightarrow \quad U_{1 \rightarrow 2}=\int_{S_{1}}^{S_{2}}(F \cos \alpha) d s \\ & d U=M d \theta \quad \rightarrow \quad U_{1 \rightarrow 2}=\int_{\theta_{1}}^{\theta_{2}} M d \theta \quad U_{1 \rightarrow 2}=M\left(\theta_{2}-\theta_{1}\right) \end{aligned}$ Work of a weight $d U=-W d y \quad \rightarrow \quad U_{1 \rightarrow 2}=-\int_{y_{1}}^{y_{2}} W d y \quad U_{1 \rightarrow 2}=-W\left(y_{2}-y_{1}\right)=-W$ Work of the force exerted by a spring $\begin{aligned} & F=k x \rightarrow d U=-F d x=-k x d x \\ & U_{1 \rightarrow 2}=-\int_{x_{1}}^{x_{2}} k x d x=\frac{1}{2} k x_{1}^{2}-\frac{1}{2} k x_{2}^{2} \quad U_{1 \rightarrow 2}=-\frac{1}{2}\left(F_{1}+F_{2}\right) \Delta x \end{aligned}$ 10.7: Potential Energy $U_{1 \rightarrow 2}=\left(V_{g}\right)_{1}-\left(V_{g}\right)_{2} \leftarrow V_{g}=W y$ $U_{1 \rightarrow 2}=\left(V_{e}\right)_{1}-\left(V_{e}\right)_{2} \leftarrow V_{e}=\frac{1}{2} k x^{2}$ $d U=-d V \quad U_{1 \rightarrow 2}=V_{1}-V_{2}$	[integration] $\rightarrow 12^{\text {th }}$ (to be taught) [differentiation] $\rightarrow 12^{\text {th }}$ (to be taught) [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [dot product] \rightarrow To be taught as a special math topic [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}(2 \mathrm{~B})$ [partial differentiation] $\rightarrow 12^{\text {th }}$ (to be taught)	$\begin{gathered} {\left[\text { force] }(\text { S4P3 }) \rightarrow 4^{\text {th }}(3 \mathrm{~A}) \text { or (S8P3) } \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \\ \text { [work] (S8P3) } \rightarrow 8^{\text {th }}(3 \mathrm{C}) \\ \text { [potential energy] }(\mathrm{SP} 3) \rightarrow 9^{\text {th }} \text { (3C) } \end{gathered}$	PS	PS

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Topics List (Continued).

Engineering Subject: Statics				
Engineering Analytic Topics \& Typical Formulas	Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch
Chapter 10: Method of Virtual Work (Continued)				
10.8: Potential Energy and Equilibrium $\begin{aligned} & \frac{d V}{d \theta}=0 \quad V_{e}=\frac{1}{2} k x_{B}^{2} \quad V_{g}=W y_{C} \quad x_{B}=2 \ell \sin \theta \quad y_{C}=\ell \cos \theta \\ & V_{e}=\frac{1}{2} k(2 \ell \sin \theta)^{2} \quad V_{g}=W(\ell \cos \theta) \\ & V=V_{e}+V_{g}=2 k \ell^{2} \sin ^{2} \theta+W \ell \cos \theta \\ & \frac{d V}{d \theta}=4 k \ell^{2} \sin \theta \cos \theta-W \ell \sin \theta=0 \\ & \frac{d V}{d \theta}=\ell \sin \theta(4 k \ell \cos \theta-W)=0 \end{aligned}$ 10.9: Stability of Equilibrium $\frac{d V}{d \theta}=0 \quad \frac{d^{2} V}{d \theta^{2}}>0$: stable equilibrium $\frac{d V}{d \theta}=0 \quad \frac{d^{2} V}{d \theta^{2}}<0$: unstable equilibrium $\frac{\partial V}{\partial \theta_{1}}=\frac{\partial V}{\partial \theta_{2}}=0 \quad\left(\frac{\partial^{2} V}{\partial \theta_{1} \partial \theta_{2}}\right)^{2}-\frac{\partial^{2} V}{\partial \theta_{1}^{2}} \frac{\partial^{2} V}{\partial \theta_{2}^{2}}<0$ $\frac{\partial^{2} V}{\partial \theta_{1}^{2}}>0 \quad \text { or } \quad \frac{\partial^{2} V}{\partial \theta_{2}^{2}}>0$	[integration] $\rightarrow 12^{\text {th }}$ (to be taught) [differentiation] $\rightarrow 12^{\text {th }}$ (to be taught) [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F})$ \rightarrow To be taught as a special math topic [dot product] \rightarrow To be taught as a special math topic [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}(2 \mathrm{~B})$ [partial differentiation] $\rightarrow 12^{\text {th }}$ (to be taught)	$\begin{gathered} {\left[\text { force }(\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(2 \mathrm{~A}) \text { or }(\mathrm{SP} 83) \rightarrow 8^{\text {th }}(3 \mathrm{C})\right.} \\ {[\text { work }](\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})} \\ \text { [potential energy] }(\mathrm{SP} 3) \rightarrow 9^{\text {th }}(3 \mathrm{C}) \end{gathered}$	PS	PS
TE END				

Part Two $1^{\text {st }}$ Round of Delphi -Five-Point Likert Scale Survey Forms

Proposed Procedures for Survey Response

To facilitate survey response to the initial selection of statics topics that could be possibly taught to students at $9^{\text {th }}$ or above Grade, as listed in the Statics Survey Form A and Survey Form B, the following procedures are hereby proposed:

1. Rate the importance of each Section as a topic in a potentially viable $9^{\text {th }}$ or above Grade statics subject, and write a number representing its "importance" value (Figure 4A), using the five-point Likert Scale (Figure 4B);
2. Check the formulas listed under the Engineering Analytic Topics \& Typical Formulas column, and use symbols shown in Figure 4B to indicate your expert opinion and advice about each formula;
3. Add your general comments and advice in the empty space.

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Figure 4A. Step-by-step procedures proposed for the review and validation of data.

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Figure 4B. Likert Scale (top) and symbols to be used for the expression of expert opinion and offer of advice.

Figure 4C. Gray-out rows.
Notice that in Statics Form A and Statics Form B, some rows under the Likert Scale (Score of Importance from Least to Most) columns are gray-out (Figure 4C). These gray-out rows correspond to some topics of statics that are so essential that they need to be included into a potentially viable K-12 statics curriculum in order to maintain the integrity of its pre-requisite sequence. The participants could still choose to rate their Likert Scale order of importance to help better understand their different roles in a potentially viable K-12 statics course.

Notes about the Statics Analytic Principles and Formulas

The leftmost column in the Statics Survey Form A and Statics Survey Form B contain

1. The titles of each section under a particular chapter in the selected textbook, which in general represent particular sets of statics related engineering analytic and predictive principles, in a qualitative and explanatory way;
2. Computational formulas, which symbolically represent the above engineering analytic and predictive principles, in a quantitative and mathematical way.

As shown in Figure 4B, the formulas extracted from the selected textbook might by categorized into five groups, corresponding to the five different symbols shown in Figure 4B, which could be used by the above-mentioned five Groups of Participants:

1. Formulas that engineering professors actually teach in classroom lectures and that practicing engineers use in engineering design projects: These are the important ones to be included in a potentially viable K-12 engineering curriculum that shall be based on cohesive and systemic mastery of engineering analytic and predictive principles and skills. For any of these formulas, a box could be used together with a number representing its order of importance according to the five-point Likert Scale (1 = Totally Unimportant, 2 = Not So Important, 3 = Might Be Important, 4 = Important, or 5 = Very Important).
2. Formulas that are rarely used in either classroom lectures or in field practice, but are used by the original discoverer of a particular set of analytic principles to derive other formulas that are actually used in classroom lecture or in field practice: Some of these "intermediate" formulas might not be used often, in other words, they are "rarely taught or used." For any of these formulas, a strikethrough could be used. If a big enough percentage of participants (maybe 85% or above) place a strikethrough on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. Interestingly enough, in some cases, rarely used calculus-based "intermediate" formulas are used to derive a final one that is based on pre-calculus mathematics skills and is actually used in most homework assignments and design projects; in this case, if the
"intermediate" formulas are removed from consideration, then the entire topic of statics could be re-classified as appropriate for $9^{\text {th }}$ Grade. For example, in fluid mechanics, the main formula $\vec{F}=m \vec{a}$ and
$p+\frac{1}{2} \rho V^{2}+\gamma z=$ constant along a streamline (Bernoulli Equation) do not need calculus, and thus, could be taught to $9^{\text {th }}$
Grade students. This type of formulas will make the list shorter and shorter as the proposed Delphi study moves to the next round of survey. Some of these formulas might not be in the selected textbook; I derived them for fun, sometimes with the help of my former engineering professor, Dr. Dr. Jayesh Bhakta, at Los Angeles City College.
3. Formulas that are particular to certain conditions and in real classroom lectures or field practice are, for all practical purposes, close to be "never used:" For any of these formulas, a double-strikethrough could be used. If a big enough percentage of participants (maybe 75\% or above) place a double-strikethrough on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. This type of formulas will also make the list shorter and shorter as the proposed Delphi study moves to the next round of survey.
4. Formulas that even experienced university engineering professors or practicing engineers might "not understand:" This is amazing but totally correct and yes, absolutely normal! There are formulas that even experienced professors might say "I do not understand this" or "I need to read the context in the book to figure this out." For any of these formulas, the participants should generally not seek to understand them (doing so does not serve the purpose of studying the relative importance of each computational formula); but instead, a question mark (?) could be used. If a big enough percentage of participants (maybe 65% or above) place a question mark (?) on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. Indeed, it makes little sense to include this type of formulas to a potentially viable K12 engineering curriculum. This type of formulas will also make the list shorter and shorter as the proposed Delphi study moves to the next round of survey. Some of these formulas might not be in the selected textbook; I derived them for fun, sometimes with the help of my former engineering professor, Dr. Jayesh Bhakta, at Los Angeles City College.

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
6. Formulas that are wrong for any reasons (my typing errors, or the authors' errors, etc.): For any of these formulas, a cross (X) could be used and the correct formulas should be given if possible. The correction would be included in the survey forms for the subsequent rounds of the four-round five-point Likert Scale Delphi study.

For convenience of statistic analysis of expert opinions and advice, it is requested that all participants print each letter of their comment legibly and separately, using fonts commonly used in engineering notebooks.

Statics Survey Form A
$1^{\text {st }}$ Round of Delphi - Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for High School Engineering
Curriculum (For the Pre-calculus Portion)

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 1: Introduction						
1.1: What Is Mechanics?	0	0	\bigcirc	\bigcirc	0	
1.2: Fundamental Concepts and Principles $\vec{a}=\frac{\vec{F}}{m} \Rightarrow \vec{F}=m \vec{a} \quad \vec{F}_{A B}=-\vec{F}_{B A} \quad \vec{F}=G \frac{m_{1} m_{2}}{r^{2}}$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
1.3: Systems of Units	0	0	0	0	0	
1.4: Conversion from One System of Units to Another	0	\bigcirc	\bigcirc	\bigcirc	0	
1.5: Method of Problem Solution	0	\bigcirc	0	0	0	
1.6: Numerical Accuracy	0	\bigcirc	\bigcirc	\bigcirc	0	
Chapter 2: Statics of Particles						
2.1: Introduction	0	0	\bigcirc	\bigcirc	\bigcirc	
Forces in a Plane 2.2: Force on a Particle. Resultant of Two Forces	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2.3: Vectors	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2.4: Addition of Vectors	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2.5: Resultant of Several Concurrent Forces	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2.6: Resolution of a Force into Components	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2.7: Rectangular Components of a Force. Unit Vectors	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form A (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 2: Statics of Particles (Continued)						
2.8: Addition of Forces by Summing x and y Components $\vec{F}=F_{x} \hat{i}+F_{y} \hat{j} \quad F_{x}=F \cos \theta \quad F_{y}=F \sin \theta \quad \tan \theta=\frac{F_{y}}{F_{x}} \quad F=\sqrt{F_{x}^{2}+F_{y}^{2}}$	\bigcirc	O	0	O	\bigcirc	
2.9: Equilibrium of a Particle $R=\sum F=F_{1}+F_{2}+\ldots=0 \Rightarrow R_{x}=\sum F_{x}=0 \quad R_{y}=\sum F_{y}=0 \quad R_{z}=\sum F_{z}=0$	0	0	0	\bigcirc	\bigcirc	
2.10: Newton's First Law of Motion	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	
2.11: Problems Involving the Equilibrium of a Particle. Free-Body Diagrams	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Forces in Space 2.12: Rectangular Components of a Force in Space $F_{y}=F \cos \theta_{y} \quad F_{h}=F \sin \theta_{y} \quad F_{x}=F_{h} \cos \phi=F \sin \theta_{y} \cos \phi \quad F_{z}=F_{h} \sin \phi=F \sin \theta_{y} \sin \phi$ $F^{2}=F_{y}+F_{h}=F_{y}+F_{x}+F_{z} \rightarrow F=\sqrt{F_{x}+F_{y}+F_{z}}$ $F_{x}=F \cos \theta_{x} \quad F_{y}=F \cos \theta_{y} \quad F_{z}=F \cos \theta_{z} \quad\left(0^{\circ}<\theta_{x, y, z}<180^{\circ}\right)$ $\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k} \quad \vec{F}=F\left(\cos \theta_{x} \hat{i}+\cos \theta_{y} \hat{j}+\cos \theta_{z} \hat{k}\right)$ $\cos \theta_{x}=\frac{F_{x}}{F}=\frac{d_{x}}{d}=\frac{R_{x}}{R} \quad \cos \theta_{y}=\frac{F_{y}}{F}=\frac{d_{y}}{d}=\frac{R_{y}}{R} \quad \cos \theta_{z}=\frac{F_{z}}{F}=\frac{d_{z}}{d}=\frac{R_{z}}{R}$ $\theta_{x(y, z)}=\cos ^{-1} \frac{F_{x(y, z)}}{F}=\cos ^{-1} \frac{d_{x(y, z)}}{d} \quad F=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$ $\hat{\lambda}=\cos \theta_{x} \hat{i}+\cos \theta_{y} \hat{j}+\cos \theta_{z} \hat{k} \quad \hat{\lambda}=\frac{\vec{F}}{F} \quad \hat{i}=\frac{d_{x}}{d} \quad \hat{j}=\frac{d_{y}}{d} \quad \hat{k}=\frac{d_{z}}{d}$ $\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z}=1 \rightarrow \hat{\lambda}_{x}^{2}+\hat{\lambda}_{y}^{2}+\hat{\lambda}_{z}^{2}=1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form A (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note: $1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 2: Statics of Particles (Continued)						
2.13: Force Defined by Its Magnitude and Two Points on Its Line of Action $\begin{aligned} & \overrightarrow{M N}=d_{x} \hat{i}+d_{y} \hat{j}+d_{z} \hat{k} \quad \hat{\lambda}=\frac{\overrightarrow{M N}}{M N}=\frac{1}{d}\left(d_{x} \hat{i}+d_{y} \hat{j}+d_{z} \hat{k}\right) \\ & d_{x(y, z)}=x(y, z)_{2}-x(y, z)_{1} \quad d=\sqrt{d_{x}^{2}+d_{y}^{2}+d_{z}^{2}} \\ & \vec{F}=F \hat{\lambda}=\frac{F}{d}\left(d_{x}^{2} \hat{i}+d_{y}^{2} \hat{j}+d_{z}^{2} \hat{k}\right) \quad F_{x}=\frac{F d_{x}}{d} \quad F_{y}=\frac{F d_{y}}{d} \quad F_{z}=\frac{F d_{z}}{d} \end{aligned}$	O	0	0	\bigcirc	\bigcirc	
2.14: Addition of Concurrent Forces in Space $\vec{R}=\sum \vec{F} \quad R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}} \quad R_{x} \hat{i}+R_{y} \hat{j}+R_{z} \hat{k}=\left(\sum F_{x}\right) \hat{i}+\left(\sum F_{y}\right) \hat{j}+\left(\sum F_{z}\right) \hat{k}$	\bigcirc	\bigcirc	O	O	O	
2.15: Equilibrium of a Particle in Space $\begin{aligned} & R=\sum F=F_{1}+F_{2}+\ldots=0 \rightarrow R_{x}=\sum F_{x}=0 \quad R_{y}=\sum F_{y}=0 \quad R_{z}=\sum F_{z}=0 \\ & {\left[\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right] \times\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} a x+b y+c z \\ d x+e y+f z \\ g x+h y+i z \end{array}\right]\left[\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right] \times\left[\begin{array}{l} F_{1} \\ F_{2} \\ F_{3} \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right]} \\ & R_{x}=\sum F_{x}=0 \\ & a F_{1}+b F_{2}+c F_{3}=0 \\ & R_{y}=\sum F_{y}=0 \\ & R_{z}=\left(\begin{array}{lll} a & b & c \\ F_{1}+e F_{2}+f F_{3}=0 \\ d & e & f \\ g F_{z}=0 & g F_{1}+h F_{2}+i F_{3}=0 & h \\ g & h \end{array}\right] \times\left[\begin{array}{l} F_{1} \\ F_{2} \\ F_{3} \end{array}\right]=\left[\begin{array}{l} a F_{1}+b F_{2}+c F_{3} \\ d F_{1}+e F_{2}+f F_{3} \\ g F_{1}+h F_{2}+i F_{3} \end{array}\right] \end{aligned}$	\bigcirc	O	0	\bigcirc	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form A (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 3: Rigid Bodies - Equivalent Systems of Forces						
3.1: Introduction	\bigcirc	0	\bigcirc	\bigcirc	0	
3.2: External and Internal Forces	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3.3: Principle of Transmissibility. Equivalent Forces	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3.4: Vector Product of Two Vectors $\begin{aligned} & \vec{V}=\vec{P} \times \vec{Q} \quad V=P Q \sin \theta \quad \vec{V} \perp \vec{P} \quad \vec{V} \perp \vec{Q} \quad \vec{V} \perp \text { Plane }_{\vec{P}, \vec{Q}} \\ & \vec{P} \times\left(\vec{Q}_{1}+\vec{Q}_{2}\right)=\vec{P} \times \vec{Q}_{1}+\vec{P} \times Q_{2} \quad(\vec{P} \times \vec{Q}) \times \vec{S} \neq \vec{P} \times(\vec{Q} \times \vec{S}) \quad \vec{V}=\vec{Q} \times \vec{P}=-(\vec{P} \times \vec{Q}) \quad \vec{Q} \times \vec{P} \neq \vec{P} \times \vec{Q} \\ & \vec{P} \times \vec{Q}=-\vec{V} \quad \vec{P} \times\left(\vec{Q}_{1}+Q_{2}\right)=\vec{P} \times \vec{Q}_{1}+\vec{P} \times Q_{2} \quad \vec{Q} \times \vec{P} \neq \vec{P} \times \vec{Q} \\ & \vec{V}=\vec{Q} \times \vec{P}=-(\vec{P} \times \vec{Q}) \quad \vec{P} \times \vec{Q}=-\vec{V} \quad \vec{V}=\vec{P} \times \vec{Q} \quad(\vec{P} \times \vec{Q}) \times \vec{S} \neq \vec{P} \times(\vec{Q} \times \vec{S}) \end{aligned}$	0	O	O	O	O	
3.5: Vector Products Expressed in Terms of Rectangular Components $\begin{aligned} & \hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0 \quad \hat{i} \times \hat{j}=\hat{k} \quad \hat{j} \times \hat{k}=\hat{i} \quad \hat{k} \times \hat{i}=\hat{j} \quad \hat{i} \times \hat{k}=-\hat{j} \quad \hat{j} \times \hat{i}=-\hat{k} \quad \hat{k} \times \hat{j}=-\hat{i} \\ & \vec{P}=P_{x} \hat{i}+P_{y} \hat{j}+P_{z} \hat{k} \quad \vec{Q}=Q_{x} \hat{i}+Q_{y} \hat{j}+Q_{z} \hat{k} \quad \vec{V}=\vec{P} \times \vec{Q}=\left\|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ P_{x} & P_{y} & P_{z} \\ Q_{x} & Q_{y} & Q_{z} \end{array}\right\|=V_{x} \hat{i}+V_{y} \hat{j}+V_{z} \hat{k} \\ & V_{x}=P_{y} Q_{z}-P_{z} Q_{y} \quad V_{y}=-\left(P_{x} Q_{z}-P_{z} Q_{x}\right)=P_{z} Q_{x}-P_{x} Q_{z} \quad V_{z}=P_{x} Q_{y}-P_{y} Q_{x} \end{aligned}$	0	0	0	0	0	
3.6: Moment of a Force about a Point $\begin{aligned} & \vec{M}_{0}=\vec{r} \times \vec{F} \quad M_{0}=r F \sin \theta=F d \quad \vec{r}=\vec{v}_{\text {position }}^{O \rightarrow A} \quad \theta=L_{\vec{r} \rightarrow \vec{F}} \quad d \perp \vec{F} \\ & \vec{M}_{0}=\vec{r} \times \vec{F}=\left\|\begin{array}{lll} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{array}\right\|=y F_{z}-z F_{y} \\ & M_{x} \hat{i}+M_{y} \hat{j}+M_{z} \hat{k} \\ & M_{y}=-\left(x F_{z}-z F_{x}\right)=z F_{x}-x F_{z} \\ & M_{z}=x F_{y}-y F_{x} \end{aligned}$	0	0	0	0	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form A (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)						
3.7: Varignon's Theorem $\vec{r} \times\left(\vec{F}_{1}+\vec{F}_{2}+\ldots\right)=\vec{r} \times \vec{F}_{1}+\vec{r} \times \vec{F}_{2}+\ldots$	O	O	O	0	O	
3.8: Rectangular Components of the Moment of a Force $\vec{M}_{B}=\vec{r}_{A / B} \times \vec{F}=\left\|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ x_{A / B} & y_{A / B} & z_{A / B} \\ F_{x} & F_{y} & F_{z} \end{array}\right\| \quad \begin{aligned} & \vec{r}_{A / B}=x_{A / B} \hat{i}+y_{A / B} \hat{j}+z_{A / B} \hat{k} \\ & x_{A / B}=x_{A}-x_{B} \\ & y_{A / B}=y_{A}-y_{B} \\ & z_{A / B}=z_{A}-z_{B} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	
3.9: Scalar Product of Two Vectors $\begin{aligned} & \vec{P} \bullet \vec{Q}=P Q \cos \theta=P_{x} Q_{x}+P_{y} Q_{y}+P_{z} Q_{z} \quad \theta=L_{\vec{P} \rightarrow \vec{Q}} \\ & \vec{P} \bullet \vec{Q}=\vec{Q} \bullet \vec{P} \quad \vec{P} \bullet\left(\vec{Q}_{1}+\vec{Q}_{2}\right)=\vec{P} \bullet \vec{Q}_{1}+\vec{P} \bullet \vec{Q}_{2} \quad P_{O L}=\vec{P} \bullet \hat{\lambda}=P_{x} \cos \theta_{x}+P_{y} \cos \theta_{y}+P_{z} \cos \theta_{z} \end{aligned}$ (More formulas on p. pp. 94-95)	\bigcirc	0	0	0	0	
3.10: Mixed Triple Product of Three Vectors $\vec{S} \bullet(\vec{P} \times \vec{Q})=\left\|\begin{array}{lll} S_{x} & S_{y} & S_{z} \\ P_{x} & P_{y} & P_{z} \\ Q_{x} & Q_{y} & Q_{z} \end{array}\right\|$	\bigcirc	\bigcirc	\bigcirc	0	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form A (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note: $1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)						
3.11: Moment of a Force about a Given Axis $M_{O L}=\hat{\lambda} \bullet \vec{M}_{O}=\hat{\lambda} \bullet(\vec{r} \times \vec{F})=\left\|\begin{array}{ccc}\lambda_{x} & \lambda_{y} & \lambda_{z} \\ x & y & z \\ F_{x} & F_{y} & F_{z}\end{array}\right\| \quad$ (More formulas on p. pp. 98)	O	O	0	0	0	
3.12: Moment of a Couple $\vec{M}=\vec{r} \times \vec{F} \quad M=r F \sin \theta=F d$	\bigcirc	\bigcirc	0	0	0	
3.13: Equivalent Couples $F_{1} d_{1}=F_{2} d_{2}$	\bigcirc	\bigcirc	\bigcirc	0	0	
3.14: Addition of Couples $\vec{M}=\vec{r} \times \vec{R}=\vec{r} \times\left(\vec{F}_{1}+\vec{F}_{2}\right)=\vec{r} \times \vec{F}_{1}+\vec{r} \times \vec{F}_{2} \quad \vec{M}=\vec{M}_{1}+\vec{M}_{2}$	\bigcirc	0	0	0	0	
3.15: Couples Can Be Represented by Vectors	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	
3.16: Resolution of a Given Force Into a Force at O and a Couple $\vec{M}_{O^{\prime}}=\vec{r}^{\prime} \times \vec{F}=(\vec{r}+\vec{s}) \times \vec{F}=\vec{r} \times \vec{F}+\vec{s} \times \vec{F} \quad \vec{M}_{O^{\prime}}=\vec{M}_{O}+\vec{s} \times \vec{F}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3.17: Reduction of a System of Forces to One Force and One Couple $\begin{aligned} & \vec{R}=\sum \vec{F} \quad \vec{M}_{O}^{R}=\sum \vec{M}_{O}=\sum(\vec{r} \times \vec{F}) \quad \vec{M}_{O^{\prime}}^{R}=\vec{M}_{O}+\vec{s} \times \vec{R} \quad \vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \\ & \vec{F}=F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k} \quad \vec{R}=R_{x} \hat{i}+R_{y} \hat{j}+R_{z} \hat{k} \quad \vec{M}_{O}^{R}=M_{x}^{R} \hat{i}+M_{y}^{R} \hat{j}+M_{z}^{R} \hat{k} \end{aligned}$	O	O	0	0	O	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form A (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)						
3.18: Equivalent Systems of Forces $\begin{aligned} & \sum \vec{F}=\sum \vec{F} \vec{F}^{\prime} \& \quad \sum \vec{M}_{0}=\sum \vec{M}_{0}^{\prime} \quad \sum \vec{F}=\sum \vec{F}^{\prime} \quad \text { and } \quad \sum \vec{M}_{o}=\vec{M}_{o}{ }^{\prime} \\ & \sum F_{x}=\sum F_{x}^{\prime} \quad \sum F_{y}=\sum F^{\prime} \quad \sum F_{z}=\sum F_{z}^{\prime} \\ & \sum M_{x}=\sum M_{x}^{\prime} \quad \sum M_{y}=\sum M^{\prime}{ }_{y} \quad \sum M_{z}=\sum M_{z}^{\prime} \end{aligned}$	0	O	0	0	\bigcirc	
3.19: Equipollent Systems of Vectors	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3.20: Further Reduction of a System of Forces	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3.21: Reduction of a System of Forces to a Wrench $p=\frac{M_{1}}{R} \quad M_{1}=\frac{\vec{R} \bullet \vec{M}_{O}^{R}}{R} \quad p=\frac{M_{1}}{R}=\frac{\vec{R} \bullet \vec{M}_{o}^{R}}{R^{2}} \quad \vec{M}_{1}=p \vec{R} \rightarrow \begin{aligned} & \vec{M}_{1}+\vec{r} \times \vec{R}=\vec{M}_{o}^{R} \\ & p \vec{R}+\vec{r} \times \vec{R}=\vec{M}_{o}^{R} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Chapter 4: Equilibrium of Rigid Bodies						
4.1: Introduction $\sum \vec{F}=0 \quad \sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum F_{z}=0 \quad \sum \vec{M}_{o}=\sum(\vec{r} \times \vec{F})=0 \quad \sum M_{x}=0 \quad \sum M_{y}=0 \quad \sum M_{z}=0$	0	0	0	0	0	
4.2: Free-Body Diagram	0	0	0	0	0	
Equilibrium in Two Dimensions 4.3: Reactions at Supports and Connections for a Two-Dimensional Structure	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4.4: Equilibrium of a Rigid Body in Two Dimensions $\begin{aligned} & F_{z}=0 \quad M_{x}=M_{y}=0 \quad M_{z}=M_{O} \quad \sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{O}=0 \\ & \sum M_{A}=0 \quad \sum M_{B}=0 \quad \sum M_{C}=0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Survey Form A (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 4: Equilibrium of Rigid Bodies (Continued)						
4.5: Statically Indeterminate Reactions. Partial Constraints	O	O	\bigcirc	O	O	
4.6: Equilibrium of a Two-Force Body	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4.7: Equilibrium of a Three-Force Body	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	
Equilibrium in Three Dimensions 4.8: Equilibrium of a Rigid Body in Three Dimensions $\sum \vec{F}=0 \quad \sum \vec{M}_{o}=\sum(\vec{r} \times \vec{F})=0 \quad \begin{array}{ll} \sum F_{x}=0 & \sum M_{x}=0 \\ \sum F_{y}=0 & \sum M_{y}=0 \\ \sum F_{z}=0 & \sum M_{z}=0 \end{array}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4.9: Reactions at Supports and Connections for a Three-Dimensional Structure	O	0	0	O	O	
Chapter 6: Analysis of Structures						
6.1: Introduction	\bigcirc	\bigcirc	\bigcirc	O	O	
Trusses	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6.3: Simple Trusses	\bigcirc	O	\bigcirc	\bigcirc	O	
6.4: Analysis of Trusses by the Method of Joints	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	
6.5: Joints under Special Loading Conditions	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6.6: Space Trusses	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
6.7: Analysis of Trusses by the Method of Sections	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6.8: Trusses Made of Several Simple Trusses	\bigcirc	O	\bigcirc	O	O	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Survey Form A (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 6: Analysis of Structures						
Frames and Machines 6.9: Structures Containing Multiforce Members	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	
6.10: Analysis of a Frame	0	O	\bigcirc	\bigcirc	\bigcirc	
6.11: Frames Which Cease to Be Rigid When Detached from Their Supports	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6.12: Machines	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Chapter 8: Friction						
8.1: Introduction	\bigcirc	O	O	O	O	
8.2: The Laws of Dry Friction. Coefficients of Friction $F_{m}=\mu_{s} N \quad F_{k}=\mu_{k} N$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8.3: Angles of Friction $\tan \phi_{s}=\frac{F_{m}}{N}=\frac{\mu_{s} N}{N} \rightarrow \tan \phi_{s}=\mu_{s} \quad \tan \phi_{k}=\frac{F_{k}}{N}=\frac{\mu_{k} N}{N} \rightarrow \tan \phi_{k}=\mu_{k}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8.4: Problems Involving Dry Friction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8.5: Wedges	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	
8.6: Square-Threaded Screws $Q=P \frac{a}{r} \quad L=n P$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8.7: Journal Bearings. Axle Friction $M=R r \sin \phi_{k} \approx R r \mu_{k} \quad r_{f}=r \sin \phi_{k} \approx r \mu_{k}$	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	
8.9: Wheel Friction. Rolling Resistance $\operatorname{Pr}=W b$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
TE END						

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B
$1^{\text {st }}$ Round of Delphi - Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for High School Engineering Curriculum (For the Calculus Portion)

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 5: Distributed Forces: Centroids and Centers of Gravity						
5.1: Introduction	\bigcirc	0	O	O	O	
Areas and Lines 5.2: Center of Gravity of a Two-Dimensional Body $\left.\begin{array}{ll} \text { Plate: } \quad \sum F_{z}: \quad W=\Delta W_{1}+\Delta W_{2}+\ldots+\Delta W_{n} & \sum M_{y}: \bar{x} W=x_{1} \Delta W+x_{2} \Delta W+\ldots+x_{n} \Delta W \\ \sum M_{x}: \bar{y} W=y_{1} \Delta W+y_{2} \Delta W+\ldots+y_{n} \Delta W \end{array}\right] \begin{array}{ll} W=\int d W \quad \bar{x} W=\int x d W \quad \bar{y} W=\int y d W & \\ \text { Wire: } \quad \sum M_{y}: \bar{x} W=\sum x \Delta W \quad \sum M_{x}: \bar{y} W=\sum y \Delta W \end{array}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5.3: Centroids of Areas and Lines Plate: $\quad \Delta W=\gamma t \Delta A \quad W=\gamma t A \quad \bar{x} A=\int x d A \quad \bar{y} A=\int y d A$ Line: $\quad \Delta W=\gamma a \Delta L \quad \bar{x} L=\int x d L \quad \bar{y} L=\int y d L$	\bigcirc	0	O	O	O	
5.4: First Moments of Areas and Lines $\bar{x} A=Q_{y}=\int x d A \quad \bar{y} A=Q_{x}=\int y d A$	\bigcirc	0	\bigcirc	O	O	
5.5: Composite Plates and Wires $\bar{X} \sum W=\sum \bar{x} W \quad \bar{Y} \sum W=\sum \bar{y} W \quad Q_{y}=\bar{X} \sum A=\sum \bar{x} A \quad Q_{x}=\bar{Y} \sum A=\sum \bar{y} A$	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	
5.6: Determination of Centroids by Integration $Q_{y}=\bar{x} A=\int \bar{x}_{e l} d A \quad Q_{x}=\bar{y} A=\int \bar{y}_{e l} d A$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 5: Distributed Forces: Centroids and Centers of Gravity (Continued)						
5.7: Theorems of Pappus-Guldinus $A=2 \pi \bar{y} L \quad V=2 \pi \bar{y} A$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5.8: Distributed Loads on Beams $W=\int_{0}^{L} w d x \quad W=\int d A=A \quad(O P) W=\int x d W \quad(O P) A=\int_{0}^{L} x d A$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	
5.9: Forces on Submerged Surfaces $w=b p=b \gamma h$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	
Volumes 5.10: Center of Gravity of a Three- Dimensional Body. Centroid of a Volume $\begin{aligned} & \bar{x} W=\int x d W \quad \bar{y} W=\int y d W \quad \bar{z} W=\int z d W \\ & \bar{x} V=\int x d V \quad \bar{y} V=\int y d V \quad \bar{z} V=\int z d V \end{aligned}$	O	O	\bigcirc	0	O	
5.11: Composite Bodies $\begin{array}{lll} \bar{X} \sum W=\sum \bar{x} W & \bar{Y} \sum W=\sum \bar{y} W & \bar{Z} \sum W=\sum \bar{z} W \\ \bar{X} \sum V=\sum \bar{x} V & \bar{Y} \sum V=\sum \bar{y} V & \bar{Z} \sum V=\sum \bar{z} V \end{array}$	O	\bigcirc	\bigcirc	\bigcirc	O	
5.12: Determination of Centroids of Volumes by Integration $\bar{x} V=\int \bar{x}_{e l} d V \quad \bar{y} V=\int \bar{y}_{e l} d V \quad \bar{z} V=\int \bar{z}_{e l} d V \quad \bar{x} V=\int \bar{x}_{e l} d V$	\bigcirc	\bigcirc	0	0	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 7: Forces in Beams and Cables						
7.1: Introduction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	
7.2: Internal Forces in Members	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	
Beams 7.3: Various Types of Loading and Support	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7.4: Shear and Bending Moment in a Beam	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	
7.5: Shear and Bending-Moment Diagrams	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7.6: Relations among Load, Shear, and Bending Moment $\begin{array}{ll} \frac{d V}{d x}=-w & V_{D}-V_{C}=-\int_{x_{C}}^{x_{D}} w d x=-w x==-(\text { Area under load curve between } \mathrm{C} \text { an } \mathrm{D}) \\ \frac{d M}{d x}=V & M_{D}-M_{C}=\int_{x_{C}}^{x_{D}} V d x=-(\text { Area under shear curve between } \mathrm{C} \text { an } \mathrm{D}) \end{array}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	
Cables 7.7: Cables with Concentrated Loads	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7.8: Cables with Distributed Loads $T \cos \theta=T_{O} \quad T \sin \theta=W \quad T=\sqrt{T_{O}^{2}+W^{2}} \quad \tan \theta=\frac{W}{T_{O}}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7.9: Parabolic Cable $y=\frac{w x^{2}}{2 T_{o}}$	O	\bigcirc	O	\bigcirc	\bigcirc	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B (Continued).

Engineering Subject: Statics

Likert Scale (Score of Importance) Note:

$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important
Engineering Analytic Topics \& Typical Formulas

Likert Scale (Score of Importance from Least to Most)				
1	2	3	4	5

Comment

Chapter 7: Forces in Beams and Cables (Continued)

7.10: Catenary

$T=\sqrt{T_{O}^{2}+w^{2} s^{2}} \quad c=\frac{T_{O}}{w} \quad T_{o}=w c \quad W=w s \quad T=w \sqrt{c^{2}+s^{2}} \quad d x=d s \cos \theta=\frac{T_{O}}{T} d s=\frac{w c d s}{w \sqrt{c^{2}+s^{2}}}$
$x=\int_{0}^{s} \frac{d s}{\sqrt{1+\frac{s^{2}}{c}}}=c\left[\sinh ^{-1} \frac{s}{c}\right]_{0}^{s}=c \sinh ^{-1} \frac{s}{c} \quad s=c \sinh \frac{x}{c} \quad y=c \cosh \frac{x}{c}$
$\sqrt{1+\frac{s^{2}}{c^{2}}}$
$y^{2}-s^{2}=c^{2} \quad T_{o}=w c \quad W=w s \quad T=w y \quad h=y_{A}=c$

Chapter 8: Friction

8.8: Thrust Bearings. Disk Friction

$\Delta M=r \Delta F=\frac{r \mu_{k} P \Delta A}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)}$
$M=\frac{\mu_{k} P}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)} \int_{0}^{2 \pi} \int_{R_{1}}^{R_{2}} r^{2} d r d \theta=\frac{\mu_{k} P}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)} \int_{0}^{2 \pi}\left[\frac{r^{2+1}}{2+1}\right]_{R_{1}}^{R_{2}} d \theta=\frac{\mu_{k} P}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)} \int_{0}^{2 \pi} \frac{1}{3}\left(R_{2}^{3}-R_{1}^{3}\right) d \theta$
Ring area : $\quad M=\frac{2}{3} \mu_{k} P \frac{R_{2}^{3}-R_{1}^{3}}{R_{2}^{2}-R_{1}^{2}} \quad$ Full circle : $\quad M=\frac{2}{3} \mu_{k} P R$
8.10: Belt Friction
$\ln \frac{T_{2}}{T_{1}}=\mu_{s} \beta \quad \frac{T_{2}}{T_{1}}=e^{\mu_{s} \beta}$
(For other formulas, refer to pp. 451-452)

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Survey Form B (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 9: Distributed Forces: Moments of Inertia						
9.1: Introduction	0	0	0	\bigcirc	0	
Moments of Inertia of Areas 9.2: Second Moment, or Moment of Inertia, of an Area $R=\int k y d A=k \int y d A \quad M=\int k y^{2} d A=k \int y^{2} d A \quad R=\int z y d A=\gamma \int y d A \quad M_{x}=\int y^{2} d A=\gamma \int y^{2} d A$	\bigcirc	0	0	\bigcirc	0	
9.3: Determination of the Moment of Inertia of an Area by Integration $\left.\begin{array}{lll} I_{x}=\int y^{2} d A & I_{y}=\int x^{2} d A & d A=b d y \end{array} \quad d I_{x}=y^{2} b d y\right] .$	0	0	0	O	0	
9.4: Polar Moment of Inertia $J_{O}=\int r^{2} d A=\int\left(x^{2}+y^{2}\right) d A=\int y^{2} d A+\int x^{2} d A \quad J_{O}=I_{x}+I_{y}$	\bigcirc	0	0	\bigcirc	0	
9.5: Radius of Gyration of an Area $I_{x}=k_{x}^{2} A \rightarrow k_{x}=\sqrt{\frac{I_{x}}{A}} \quad I_{y}=k_{y}^{2} A \rightarrow k_{y}=\sqrt{\frac{I_{y}}{A}} \quad J_{O}=k_{o}^{2} A \rightarrow k_{O}=\sqrt{\frac{J_{O}}{A}}$	0	0	0	O	0	
9.6: Parallel-Axis Theorem $\begin{aligned} & I=\int y^{2} d A \\ & I=\int y^{2} d A=\int\left(y^{\prime}+d\right)^{2} d A=\int y^{\prime 2} d A+2 d \int y^{\prime} d A+d^{2} \int d A \\ & I=\bar{I}+A d^{2} \quad k^{2}=\bar{k}^{2}+d^{2} \quad J_{O}=\bar{J}_{O}+A d^{2} \quad \text { or } \quad k_{O}^{2}=\bar{k}_{O}^{2}+d^{2} \end{aligned}$	0	0	0	O	0	
9.7: Moments of Inertia of Composite Areas (For formulas, refer to p. 485)	0	0	0	0	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Survey Form B (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 9: Distributed Forces: Moments of Inertia (Continued)						
9.8: Product of Inertia $I_{x y}=\int x y d A=\int\left(x^{\prime}+\bar{x}\right)\left(y^{\prime}+\bar{y}\right) d A=\int x^{\prime} y^{\prime} d A+\bar{y} \int x^{\prime} d A+\bar{x} \int y^{\prime} d A+\overline{x y} \int d A \quad I_{x y}=\bar{I}_{x^{\prime} y^{\prime}}+\overline{x y} A$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9.9: Principal Axes and Principal Moments of Inertia (For formulas, refer to pp. 498-500)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9.10: Mohr's Circle for Moments and Products of Inertia	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Moments of Inertia of Masses 9.11: Moment of Inertia of a Mass $\begin{aligned} & I=\int r^{2} d m \quad I=k^{2} m \quad \text { or } \quad k=\sqrt{\frac{I}{m}} \quad I_{x}=\int\left(y^{2}+z^{2}\right) d m \quad I_{y}=\int\left(z^{2}+x^{2}\right) d m \\ & I_{z}=\int\left(x^{2}+y^{2}\right) d m \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9.12: Parallel-Axis Theorem $\begin{aligned} & x=x^{\prime}+\bar{x} \quad y=y^{\prime}+\bar{y} \quad z=z^{\prime}+\bar{z} \quad I_{x}=\int\left(y^{2}+z^{2}\right) d m \\ & I_{x}=\bar{I}_{x^{\prime}}+m\left(\bar{y}^{2}+\bar{z}^{2}\right)=\int\left[\left(y^{\prime}+\bar{y}\right)^{2}+\left(z^{\prime}+\bar{z}\right)^{2}\right] d m \\ & =\int\left(y^{\prime 2}+z^{\prime 2}\right) d m+2 \bar{y} \int y^{\prime} d m+2 \bar{z} \int z^{\prime} d m+\left(\bar{y}^{2}+\bar{z}^{2}\right) \int d m \\ & I_{y}=\bar{I}_{y^{\prime}}+m\left(\bar{z}^{2}+\bar{x}^{2}\right) \quad I_{z}=\bar{I}_{z^{\prime}}+m\left(\bar{x}^{2}+\bar{y}^{2}\right) \quad I=\bar{I}+m d^{2} \quad k^{2}=\bar{k}^{2}+d^{2} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B (Continued).

Engineering Subject: Statics

Likert Scale (Score of Importance) Note:

$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important
Engineering Analytic Topics \& Typical Formulas

Likert Scale (Score of Importance from Least to Most)				
1	2	3	4	5

Comment

Chapter 9: Distributed Forces: Moments of Inertia (Continued)

9.13: Moments of Inertia of Thin Plates

$\left.\begin{array}{l}I_{A A^{\prime}, \text { mass }}=\int r^{2} d m \\ d m=\rho t d A\end{array}\right\} \quad I_{A A^{\prime}, \text { mass }}=\rho t \int r^{2} d A$
$I_{A A^{\prime} \text {,mass }}=\rho t I_{A A^{\prime} \text {,area }} \quad I_{B B^{\prime} \text {,mass }}=\rho t I_{B B^{\prime} \text {,area }} \quad I_{C C^{\prime}, \text {,ass }}=\rho t J_{C, \text { area }} \quad I_{C C^{\prime}}=I_{A A^{\prime}}+I_{B B^{\prime}}$
Rectangular Plate

$$
I_{A A^{\prime}, \text { mass }}=\rho t I_{A A^{\prime}, \text { area }}=\rho t\left(\frac{1}{12} a^{3} b\right) \quad I_{B B, \text {,mass }}=\rho t I_{B B, \text { area }}=\rho t\left(\frac{1}{12} a b^{3}\right)
$$

$$
I_{A A^{\prime}}=\frac{1}{12} m a^{2} \quad I_{B B^{\prime}}=\frac{1}{12} m b^{2} \quad I_{C C^{\prime}}=I_{A A^{\prime}}+I_{B B^{\prime}}=\frac{1}{12} m\left(a^{2}+b^{2}\right)
$$

Circular Plate
$I_{A A^{\prime}, \text { mass }}=\rho t I_{A A^{\prime}, \text { area }}=\rho t\left(\frac{1}{4} \pi r^{4}\right) \quad I_{A A^{\prime}}=I_{B B^{\prime}}=\frac{1}{4} m r^{2} \quad I_{C C^{\prime}}=I_{A A^{\prime}}+I_{B B^{\prime}}=\frac{1}{12} m r^{2}$
9.14: Determination of the Moment of Inertia of a Three-Dimensional Body by Integration (For formulas, refer to p. 517).
9.15: Moments of Inertia of Composite Bodies

0	0	0	0	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
Statics Survey Form B (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 9: Distributed Forces: Moments of Inertia (Continued)						
9.16: Moment of Inertia of a Body with Respect to an Arbitrary Axis through O. Mass Products of Inertia $\begin{aligned} & I_{O L}=\int p^{2} d m=\int\|\vec{\lambda} \times \vec{r}\|^{2} d m=\int\left[\left(\lambda_{x} y-\lambda_{y} x\right)^{2}+\left(\lambda_{y} z-\lambda_{z} y\right)^{2}+\left(\lambda_{z} x-\lambda_{x} z\right)^{2}\right] \\ & =\lambda_{x}^{2} \int\left(y^{2}+z^{2}\right) d m+\lambda_{y}^{2} \int\left(z^{2}+x^{2}\right) d m+\lambda_{z}^{2} \int\left(x^{2}+y^{2}\right) d m- \\ & 2 \lambda_{x} \lambda_{y} \int x y d m-2 \lambda_{y} \lambda_{z} \int y z d m-2 \lambda_{z} \lambda_{x} \int z x d m \\ & I_{x y}=\int x y d m \quad I_{y z}=\int y z d m \quad I_{z x}=\int z x d m \\ & I_{O L}=I_{x} \lambda_{x}^{2}+I_{y} \lambda_{y}^{2}+I_{z} \lambda_{z}^{2}-2 I_{x y} \lambda_{x} \lambda_{y}-2 I_{y z} \lambda_{y} \lambda_{y z}-2 I_{z x} \lambda_{z} \lambda_{x} \\ & I_{x y}=\bar{I}_{x^{\prime} y^{\prime}}+m \overline{x y} \quad I_{y z}=\bar{I}_{y^{\prime} z^{\prime}}+m \overline{y z} \quad I_{z x}=\bar{I}_{z^{\prime} x^{\prime}}+m \overline{z x} \end{aligned}$	0	0	0	O	\bigcirc	
9.17: Ellipsoid of Inertia. Principal Axes of Inertia $\begin{aligned} & (O Q) \lambda_{x}=x \quad(O Q) \lambda_{y}=y \quad(O Q) \lambda_{z}=z \quad I_{x} x^{2}+I_{y} y^{2}+I_{z} z^{2}-2 I_{x y} x y-2 I_{y z} y z-2 I_{z x} z x=1 \\ & I_{x^{\prime}} \cdot x^{\prime 2}+I_{y^{\prime}} \cdot y^{\prime 2}+I_{z^{\prime}} \cdot z^{\prime 2}=1 \quad I_{O L}=I_{x^{\prime}} \cdot \lambda_{x^{\prime}}^{2}+I_{y^{\prime}} \cdot \lambda_{y^{\prime}}^{2}+I_{z^{\prime}} \cdot \lambda_{z^{\prime}}^{2} \end{aligned}$	0	0	0	0	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 9: Distributed Forces: Moments of Inertia (Continued)						
9.18: Determination of the Principal Axes and Principal Moments of Inertia of a Body of Arbitrary Shape $\begin{aligned} & \left.\begin{array}{l} \nabla f=(2 K) \vec{r} \\ K=\text { constant } \\ \vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \end{array}\right\} \rightarrow \nabla f=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}+\frac{\partial f}{\partial z} \hat{k} \\ & \begin{array}{l} f(x, y, z)=I_{x} x^{2}+I_{y} y^{2}+I_{z} z^{2}-2 I_{x y} x y-2 I_{y z} y z-2 I_{z x} z x-1 \\ \ldots \\ \left\|\begin{array}{ccc} I_{x}-K & -I_{x y} & -I_{z x} \\ -I_{x y} & I_{y}-K & -I_{y z} \\ -I_{z x} & -I_{y z} & I_{z}-K \end{array}\right\|=0 \end{array} \end{aligned}$ (More formulas on p.p. 534-535)	O	O	\bigcirc	O	0	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 10: Method of Virtual Work						
10.1: Introduction	\bigcirc	O	\bigcirc	0	0	
10.2: Work of a Force $d U=\vec{F} \bullet d \vec{x} \quad d U=F d s \cos \alpha \quad d U=M d \theta$	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	
10.3: Principle of Virtual Work $\delta U=\vec{F}_{1} \bullet \delta \vec{r}+\vec{F}_{2} \bullet \delta \vec{r}+\ldots+\vec{F}_{n} \bullet \delta \vec{r}=\left(\vec{F}_{1}+\vec{F}_{2}+\ldots+\vec{F}_{n}\right) \bullet \delta \vec{r} \quad \rightarrow \quad \delta U=\vec{R} \bullet \delta \vec{r}$	0	\bigcirc	0	0	\bigcirc	
10.4: Applications of the Principle of Virtual Work $\begin{aligned} & x_{B}=2 \ell \sin \theta \quad y_{C}=\ell \cos \theta \quad \delta x_{B}=2 \ell \cos \theta \delta \theta \quad \delta y_{C}=-\ell \sin \theta \delta \theta \\ & \delta U=\delta U_{Q}+\delta U_{P}=-Q \delta x_{B}-P \delta y_{C}=-2 Q \ell \cos \theta \delta \theta+P \ell \sin \theta \delta \theta \\ & \delta U=0 \rightarrow 2 Q \ell \cos \theta \delta \theta=P \ell \sin \theta \delta \theta \quad \rightarrow \quad Q=\frac{1}{2} P \tan \theta \quad B_{x}=-\frac{1}{2} P \tan \theta \end{aligned}$	\bigcirc	0	0	0	\bigcirc	
10.5: Real Machines. Mechanical Efficiency $\begin{aligned} & \delta U=-Q \delta x_{B}-P \delta y_{C}-F \delta x_{B}=-2 Q \ell \cos \theta \delta \theta+P \ell \sin \theta \delta \theta-\mu P \ell \cos \theta \delta \theta \\ & \delta U=0 \rightarrow 2 Q \ell \cos \theta \delta \theta=P \ell \sin \theta \delta \theta-\mu P \ell \cos \theta \delta \theta \rightarrow \\ & \eta=\frac{\text { output work }}{\text { input work }}=\frac{2 Q \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta} \\ & \eta=\frac{2\left(\frac{1}{2} P(\tan \theta-\mu)\right) \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta}=\frac{P(\tan \theta-\mu) \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta}=1-\mu \cot \theta \end{aligned}$	0	\bigcirc	0	0	\bigcirc	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B (Continued).

Engineering Subject: Statics

Likert Scale (Score of Importance) Note:

$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important
Engineering Analytic Topics \& Typical Formulas

Likert Scale (Score of Importance from Least to Most)				
1	2	3	4	5

Chapter 10: Method of Virtual Work (Continued)

10.6: Work of a Force during a Finite Displacement
$d U=\vec{F} \bullet d \vec{r} \rightarrow U_{1 \rightarrow 2}=\int_{A_{1}}^{A_{2}} \vec{F} \bullet d \vec{r} \quad d U=F d s \cos \alpha \rightarrow U_{1 \rightarrow 2}=\int_{s_{1}}^{s_{2}}(F \cos \alpha) d s$
$d U=M d \theta \quad \rightarrow \quad U_{1 \rightarrow 2}=\int_{\theta_{1}}^{\theta_{2}} M d \theta \quad U_{1 \rightarrow 2}=M\left(\theta_{2}-\theta_{1}\right)$
Work of a weight
$d U=-W d y \rightarrow U_{1 \rightarrow 2}=-\int_{y_{1}}^{y_{2}} W d y \quad U_{1 \rightarrow 2}=-W\left(y_{2}-y_{1}\right)=-W \Delta y$
Work of the force exerted by a spring
$F=k x \rightarrow d U=-F d x=-k x d x$
$U_{1 \rightarrow 2}=-\int_{x_{1}}^{x_{2}} k x d x=\frac{1}{2} k x_{1}^{2}-\frac{1}{2} k x_{2}^{2} \quad U_{1 \rightarrow 2}=-\frac{1}{2}\left(F_{1}+F_{2}\right) \Delta x$
10.7: Potential Energy
$U_{1 \rightarrow 2}=\left(V_{g}\right)_{1}-\left(V_{g}\right)_{2} \leftarrow V_{g}=$ Wy $\quad U_{1 \rightarrow 2}=\left(V_{e}\right)_{1}-\left(V_{e}\right)_{2} \leftarrow V_{e}=\frac{1}{2} k x^{2}$
$d U=-d V \quad U_{1 \rightarrow 2}=V_{1}-V_{2}$

O	O	O	O	O	

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

Statics Survey Form B (Continued).

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important						
Engineering Analytic Topics \& Typical Formulas	Likert Scale (Score of Importance from Least to Most)					Comment
	1	2	3	4	5	
Chapter 10: Method of Virtual Work (Continued)						
10.8: Potential Energy and Equilibrium $\begin{aligned} & \frac{d V}{d \theta}=0 \quad V_{e}=\frac{1}{2} k x_{B}^{2} \quad V_{g}=W y_{C} \quad x_{B}=2 \ell \sin \theta \quad y_{C}=\ell \cos \theta \\ & V_{e}=\frac{1}{2} k(2 \ell \sin \theta)^{2} \quad V_{g}=W(\ell \cos \theta) \quad V=V_{e}+V_{g}=2 k \ell^{2} \sin ^{2} \theta+W \ell \cos \theta \\ & \frac{d V}{d \theta}=4 k \ell^{2} \sin \theta \cos \theta-W \ell \sin \theta=0 \quad \frac{d V}{d \theta}=\ell \sin \theta(4 k \ell \cos \theta-W)=0 \end{aligned}$	0	O	\bigcirc	0	\bigcirc	
10.9: Stability of Equilibrium $\frac{d V}{d \theta}=0 \quad \frac{d^{2} V}{d \theta^{2}}>0$: stable equilibrium $\quad \frac{d V}{d \theta}=0 \quad \frac{d^{2} V}{d \theta^{2}}<0$: unstable equilibrium $\frac{\partial V}{\partial \theta_{1}}=\frac{\partial V}{\partial \theta_{2}}=0 \quad\left(\frac{\partial^{2} V}{\partial \theta_{1} \partial \theta_{2}}\right)^{2}-\frac{\partial^{2} V}{\partial \theta_{1}^{2}} \frac{\partial^{2} V}{\partial \theta_{2}^{2}}<0 \quad \frac{\partial^{2} V}{\partial \theta_{1}^{2}}>0 \quad$ or $\quad \frac{\partial^{2} V}{\partial \theta_{2}^{2}}>0$	O	O	O	O	O	

Part Three Findings from the Research Project

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
List 1A. Pre-Calculus Based Statics Topics That Possibly Could Be Taught at $9^{\text {th }}$ Grade

Chapter/Section	Page Numbers	Number of Pages
Chapter 1: Introduction (pp. 1-13 $\rightarrow 13$ pages sub-total. 6 sections out of 6)		
1.1: What Is Mechanics?	1-13	13
1.2: Fundamental Concepts and Principles		
1.3: Systems of Units		
1.4: Conversion from One System of Units to Another		
1.5: Method of Problem Solution		
1.6: Numerical Accuracy		
Chapter 2: Statics of Particles (pp. 15-63 $\rightarrow 49$ pages sub-total. 15 sections out of 15)		
2.1: Introduction	15-63	49
2.2: Force on a Particle. Resultant of Two Forces		
2.3: Vectors		
2.4: Addition of Vectors		
2.5: Resultant of Several Concurrent Forces		
2.6: Resolution of a Force into Components		
2.7: Rectangular Components of a Force. Unit Vector		
2.8: Addition of Forces by Summing x and y Components		
2.9: Equilibrium of a Particle		
2.10: Newton's First Law of Motion		
2.11: Problems Involving the Equilibrium of a Particle. Free-Body Diagrams		
2.12: Rectangular Components of a Force in Space		
2.13: Force Defined by Its Magnitude and Two Points on Its Line of Action		
2.14: Addition of Concurrent Forces in Space		
2.15: Equilibrium of a Particle in Space		
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (pp. 74-145 $\boldsymbol{\rightarrow}$ (72 pages sub-total. 21 sections out of 21)		
3.1: Introduction	74-145	72
3.2: External and Internal Forces		
3.3: Principle of Transmissibility. Equivalent Forces		
3.4: Vector Product of Two Vectors		
3.5: Vector Products Expressed in Terms of Rectangular Components		
3.6: Moment of a Force about a Point		
3.7: Varignon's Theorem		
3.8: Rectangular Components of the Moment of a Force		
3.9: Scalar Product of Two Vectors		
3.10: Mixed Triple Product of Three Vectors		

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
List 1A. (Continued)

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
List 1A. (Continued)

Chapter/Section	Page Numbers	Number of Pages
Chapter 6: Analysis of Structures (Continued)		
6.10: Analysis of a Frame	\uparrow	\uparrow
6.11: Frames Which Cease to Be Rigid When Detached from Their Supports		
6.12: Machines		
Chapter 7: Forces in Beams and Cables (pp. 353-401 $\rightarrow 49$ pages sub-total. 0 sections out of 10)		
Chapter 8: Friction (pp. 411-460 $\rightarrow 50$ pages sub-total. 8 sections out of 10)		
8.1: Introduction	411-441	31
8.2: The Laws of Dry Friction. Coefficients of Friction		
8.3: Angles of Friction		
8.4: Problems Involving Dry Friction		
8.5: Wedges		
8.6: Square-Threaded Screws		
8.7: Journal Bearings. Axle Friction		
8.9: Wheel Friction. Rolling Resistance	443-450	8
Chapter 9: Distributed Forces: Moments of Inertia (pp. 471-544 $\rightarrow 74$ pages sub-total. 0 sections out of 18)		
Chapter 10: Method of Virtual Work (pp. 557-591 $\rightarrow 35$ pages sub-total. 0 sections out of 9)		

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
List 1A. (Continued)

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia

List 1B. Pre-Requisite Mathematics and Science Topics to Be Reviewed Before Teaching the Pre-Calculus Portion of Statics Topics to $9^{\text {th }}$ Grade Students

Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)	
Math	Physics
1. [areas of geometric shapes: circle, triangle, etc.] (M5M1) $\rightarrow 5^{\text {th }}$ and (2B) (M6M2) $\rightarrow 6^{\text {th }}$ (2C) 2. [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B) 3. [cross product] \rightarrow To be taught as a special math topic 4. [dot product] \rightarrow To be taught as a special math topic 5. [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or $(\mathrm{M} 7 \mathrm{~N} 1) \rightarrow 7^{\text {th }}(2 \mathrm{~A})$ 6. [geometry: point, axis/line, 3D body] (M6G1) (M6G2) (M6M3) $\rightarrow 6^{\text {th }}$ (2B) 7. [linear algebra](MA2A6) (MA2A7) (MA2A8) (MA2A9) $\rightarrow 10^{\text {th }}(2 \mathrm{G}) \rightarrow$ To be taught as a special math topic 8. [measurement: time] (M2M2) $\rightarrow 2^{\text {nd }}(2 \mathrm{C})$ 9. [Parallelogram Law for the Addition of Force/Vector Graphics] (MA3A10) $\rightarrow 11^{\text {th }}$ $(2 \mathrm{H}) \rightarrow$ To be taught as a special math topic 10. [percent] (M5N5) $\rightarrow 5^{\text {th }}$ (2A) 11. [problem-solving] (M3N5) $\rightarrow 3^{\text {rd }}$ (2A) 12. [sigma notation] (M6N1) $\rightarrow 6^{\text {th }}(1 \mathrm{~A})$ or (MA1A3) $\rightarrow 9^{\text {th }}(2 \mathrm{E}) \rightarrow$ To be taught as a special math topic 13. [square root] (M8N1) $\rightarrow 8^{\text {th }}$ (2A) 14. [surface] (M6M4) $\rightarrow 6^{\text {th }}$ (2B) 15. [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}(2 \mathrm{~F}) \rightarrow$ To be taught as a special math topic [unit conversion] (M6M1) $\rightarrow 6^{\text {th }}$ (2C) 16. [vector graphics] (MA3A10) $\rightarrow 9^{\text {th }}(2 \mathrm{H}) \rightarrow$ To be taught as a special math topic	1. [acceleration] (S8P3) \rightarrow 8th (3C) 2. [force] $(\mathrm{S} 4 \mathrm{P} 3) \rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or $(\mathrm{S} 8 \mathrm{P} 3) \rightarrow 8^{\text {th }}(3 \mathrm{C})$ 3. [lever] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ 4. [motion] (SKP2) $\rightarrow \mathrm{K}$ (3A) 5. [Newton's $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ Laws] (SP1) $\rightarrow 9^{\text {th }}$ (3C) 6. [Newton's Law of Gravitation] (S8P5) $\rightarrow 8^{\text {th }}$ (3C) 7. [scientific inquiry] (S7CS9) $\rightarrow 7^{\text {th }}$ (3B)

Professors: Dr. Robert Wicklein \& John Mativo
Student: Edward Locke, University of Georgia
List 2A. Calculus Based Statics Topics for Post-Secondary Engineering Education

Chapter/Section	Page Nos.	Chapter/Section	Page Nos.
Chapter 5: Distributed Forces: Centroids \& Centers of Gravity		Chapter 7: Forces in Beams and Cables	
5.1: Introduction	219-273	7.1: Introduction	354-401
5.2: Center of Gravity of a Two-Dimensional Body		7.2: Internal Forces in Members	
5.3: Centroids of Areas and Lines		7.3: Various Types of Loading and Support	
5.4: First Moments of Areas and Lines		7.4: Shear and Bending Moment in a Beam	
5.5: Composite Plates and Wires		7.5: Shear and Bending-Moment Diagrams	
5.6: Determination of Centroids by Integration		7.6: Relations among Load, Shear, and Bending Moment	
5.7: Theorems of Pappus-Guldinus		7.7: Cables with Concentrated Loads	
5.8: Distributed Loads on Beams		7.8: Cables with Distributed Loads	
5.9: Forces on Submerged Surfaces		7.9: Parabolic Cable	
5.10: Center of Gravity of a Three- Dimensional Body. Centroid of a Volume		7.10: Catenary	
		Chapter 8: Friction	
5.11: Composite Bodies		8.8: Thrust Bearings. Disk Friction	442-443
5.12: Determination of Centroids of Volumes by Integration		8.10: Belt Friction	450-460
Chapter 9: Distributed Forces: Moments of Inertia			
9.1: Introduction	472-544	9.10: Mohr's Circle for Moments and Products of Inertia	\leftarrow
9.2: Second Moment, or Moment of Inertia, of an Area		9.11: Moment of Inertia of a Mass	
9.3: Determination of the Moment of Inertia of an Area by Integration		9.12: Parallel-Axis Theorem	
9.4: Polar Moment of Inertia		9.13: Moments of Inertia of Thin Plates	
9.5: Radius of Gyration of an Area		9.14: Determination of the Moment of Inertia of a Three-Dimensional Body by Integration	
9.6: Parallel-Axis Theorem		9.15: Moments of Inertia of Composite Bodies	
9.7: Moments of Inertia of Composite Areas		9.16: Moment of Inertia of a Body with Respect to an Arbitrary Axis through O. Mass Products of Inertia	
9.8: Product of Inertia		9.17: Ellipsoid of Inertia. Principal Axes of Inertia	
9.9: Principal Axes and Principal Moments of Inertia		9.18: Determination of the Principal Axes and Principal Moments of Inertia of a Body of Arbitrary Shape	
Chapter 10: Method of Virtual Work			
10.1: Introduction	557-591	10.6: Work of a Force during a Finite Displacement	\leftarrow
10.2: Work of a Force		10.7: Potential Energy	
10.3: Principle of Virtual Work		10.8: Potential Energy and Equilibrium	
10.4: Applications of the Principle of Virtual Work		10.9: Stability of Equilibrium	
10.5: Real Machines. Mechanical Efficiency			

List 2B. Pre-Requisite Math and Science Topics to Be Reviewed Before Teaching the Calculus Portion of Statics Topics

Math \& Science Pre-requisite Topics \& Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)	
Math	Physics/Chemistry
1. [areas of geometric shapes: circle, triangle, etc.] (M3M3) (M3M4) $\rightarrow 3^{\text {rd }}(2 \mathrm{~B})$, (M5M1) $\rightarrow 5^{\text {th }}$ and (2B) (M6M2) $\rightarrow 6^{\text {th }}$ (2C)	1. [acceleration] (S8P3) \rightarrow 8th (3C)
2. [coordinate system] (M4G3) $\rightarrow 4^{\text {th }}$ (2B)	2. [force] (S4P3) $\rightarrow 4^{\text {th }}(3 \mathrm{~A})$ or (S 8 P 3$) \rightarrow 8^{\text {th }}$
3. [cross product] \rightarrow To be taught as a special math topic	(3C)
4. [differentiation] $\rightarrow 12^{\text {th }}$ (to be taught)	3. [lever] (S4P3) $\rightarrow 4^{\text {th }}$ (3A)
5. [dot product] \rightarrow To be taught as a special math topic	4. [motion] (SKP2) \rightarrow K (3A)
6. [four operations] (M1N3) $\rightarrow 1^{\text {st }}(2 \mathrm{~A})+(\mathrm{M} 2 \mathrm{~N} 3) \rightarrow 2^{\text {nd }}(1 \mathrm{~A})$, or (M7N1) $\rightarrow 7^{\text {th }}(2 \mathrm{~A})$	5. [Newton's $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ Laws] (SP1) \rightarrow
7. [geometry: point, axis/line, 3D body] (M6G1) (M6G2) (M6M3) $\rightarrow 6^{\text {th }}$ (2B)	$9^{\text {th }}$ (3C)
8. [geometric shapes: ellipse] (MA2G4) $\rightarrow 10^{\text {th }}(2 \mathrm{~F}) \rightarrow$ To be taught as a special math topic	6. [Newton's Law of Gravitation] (S8P5) \rightarrow
9. [gradient: "del"] $\rightarrow 12^{\text {th }}$ (to be taught)	$8^{\text {th }}$ (3C)
10. [integration] $\rightarrow 12^{\text {th }}$ (To be taught)	7. [potential energy] (SP3) $\rightarrow 9^{\text {th }}$ (3C)
11. [integration: area of surface of revolution, curve, volume of body of revolution] $\rightarrow 12^{\text {th }}$ (To be taught)	8. [power] (SP3) $\rightarrow 9^{\text {th }}$ (3C)
12. [linear algebra](MA2A6) (MA2A7) (MA2A8) (MA2A9) $\rightarrow 10^{\text {th }}$ (2G) \rightarrow To be taught as a special math topic	9. [scientific inquiry] (S7CS9) $\rightarrow 7^{\text {th }}$ (3B)
13. [logarithmic functions] (MA2A4) $\rightarrow 10^{\text {th }}$ (2E) \rightarrow To be taught as a special math topic	10. [work] (S8P3) $\rightarrow 8^{\text {th }}$ (3C)
14. [measurement: area, weight, thickness] (M6M1) (M6M2) $\rightarrow 6^{\text {th }}$ (2C)	
15. [measurement: time] (M2M2) $\rightarrow 2^{\text {nd }}$ (2C)	
16. [Parallelogram Law for the Addition of Force/Vector Graphics] (MA3A10) $\rightarrow 11^{\text {th }}(2 \mathrm{H}) \rightarrow$ To be taught as special topic	
17. [partial differentiation] $\rightarrow 12^{\text {th }}$ (to be taught)	
18. [percent] (M5N5) $\rightarrow 5^{\text {th }}$ (2A)	
19. [problem-solving] (M3N5) $\rightarrow 3^{\text {rd }}$ (2A)	
20. [sigma notation] (M6N1) $\rightarrow 6^{\text {th }}(1 \mathrm{~A})$ or (MA1A3) $\rightarrow 9^{\text {th }}$ (2E) \rightarrow To be taught as a special math topic	
21. [special two-dimensional figures: parabolic spandrel, general spandrel] \rightarrow To be taught as a special math topic	
22. [square root] (M8N1) $\rightarrow 8^{\text {th }}$ (2A)	
23. [surface] (M6M4) $\rightarrow 6^{\text {th }}$ (2B)	
24. [three-dimensional bodies: circular cone, sphere] (M2G2) $\rightarrow 2^{\text {nd }}$ (2B)	
25. [three-dimensional bodies: slender rod, circular cylinder, cone] (M6M3) $\rightarrow 6^{\text {th }}$ (2B)	
26. [three-dimensional bodies: thin rectangular plate, rectangular prism] (M5M4) $\rightarrow 5^{\text {th }}$ (2B)	
27. [trigonometric functions] (MA2G2) $\rightarrow 10^{\text {th }}$ (2F) \rightarrow To be taught as a special math topic	
28. [two-dimensional figures: circle, arc, triangle, ellipse, parabolic] (M1G1) (M1G2) $\rightarrow 1^{\text {st }}(1 \mathrm{~B})+\left(\right.$ MA2G4) $\rightarrow 10^{\text {th }}(2 \mathrm{~F}) \rightarrow$ To be taught as a special math topic	
29. [unit conversion] (M6M1) $\rightarrow 6^{\text {th }}$ (2C)	
30. [vector graphics] (MA3A10) $\rightarrow 9^{\text {th }}(2 \mathrm{H}) \rightarrow$ To be taught as a special math topic	
31. [volume: sphere, cone, pyramid] (M5M4) $\rightarrow 5^{\text {th }}$ (1B) (M6M3) $\rightarrow 6^{\text {th }}$ (2B)	
32. (MA1G5) $\rightarrow 9^{\text {th }}$ (2F)	
33. [volume: ellipsoid, paraboloid] \rightarrow To be taught as a special math topic	

