Appendix 3A High School Appropriate Statics Tables

For

HIGH SCHOOL APPROPRIATE ENGINEERING CONTENT KNOWLEDGE IN THE INFUSION OF ENGINEERING DESIGN

INTO K-12 CURRICULUM

(Under the General Topic of "Engineering Design in Secondary Education" and of

"Vision and Recommendations for Engineering-Oriented Professional Development")

Summer 2009 (Completion Date: Thursday, July 9, 2009)

College of Education, University of Georgia

Professors:

Dr. Robert Wicklein, Dr. Roger Hill and Dr. John Mativo

Advisors:

Dr. Sidney Thompson and Dr. David Gattie (Driftmier Engineering Center)

Student:

Edward Locke (edwardnlocke@yahoo.com)

Notes on How to Use This Appendix

The whole Research Project and this Appendix constitute the groundwork for a proposed four-round five-point Likert Scale survey study, with five major steps in its research design:

- 1. Preliminary selection of high school appropriate statics topics;
- 2. Presentation of data to faculty advisors for review;
- 3. Presentation of data to a panel of university faculty for validation and endorsement;
- 4. 4-round Delphi study using 5-point Likert Scale;
- 5. Comparative analysis of the results from the 4-round Delphi study, for the creation of a formal list of high school appropriate engineering topics.

Participants in the "4-round Delphi study using 5-point Likert Scale" might include the following groups of stakeholders in engineering and technology education:

- <u>Group 1 (University Engineering and Technology Faculty);</u>
- <u>Group 2 (University K-12 Technology Education Faculty);</u>
- Group 3 (University Undergraduate Senior-Year Engineering Students);
- Group 4 (K-12 Technology and STEM Teachers and Administrators);
- Group 5 (Practicing Engineers and Technicians).

Project Title: High School Appropriate Engineering Content Knowledge (Appendix 3A) WFED 7650-Applied Project in Workforce Education Professors: Dr. Robert Wicklein & John Mativo Student: Edward Locke, University of Georgia

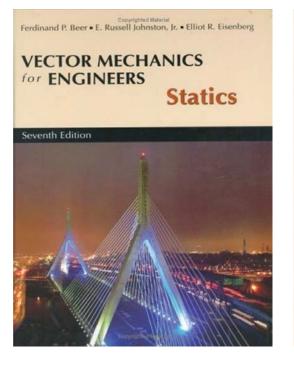


Figure 1A. The main textbook where the Statics related engineering analytic and predictive principles and computational formulas are extracted.

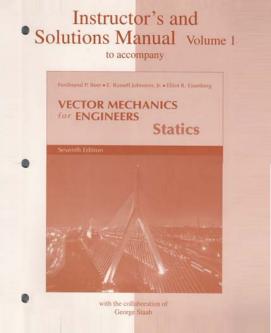
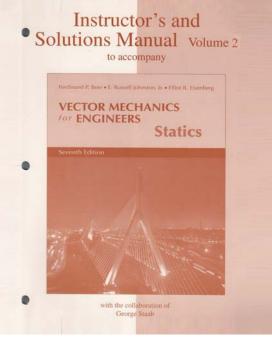



Figure 1C. The Volume 1 of the Instructor's and Solutions Manual for the main textbook used to double-check for the mathematics and physics principles and computational skills needed for the study of various topics of statics contained in the main textbook. Figure 1C. The Volume 2 of the Instructor's and Solutions Manual for the main textbook used to double-check for the mathematics and physics principles and computational skills needed for the study of various topics of statics contained in the main textbook.

2

Textbook Information

	Main Textbook	Instructor's So	lution Manuals
Title	Vector Mechanics for Engineers	Instructor's and Solutions Manual to	Instructor's and Solutions Manual to
	Statics, 7 th Edition	Accompany Vector Mechanics for	Accompany Vector Mechanics for
		Engineers – Statics, 7 th Edition,	Engineers – Statics, 7 th Edition,
		Volume 1	Volume 2
Authors	Ferdinand P. Beer & E. Russell	Ferdinand P. Beer & E. Russell	Ferdinand P. Beer & E. Russell
	Johnston & Elliot R. Eisenberg	Johnston & Elliot R. Eisenberg	Johnston & Elliot R. Eisenberg
Publisher	McGraw-Hill Higher Education	McGraw-Hill Higher Education	McGraw-Hill Higher Education
Year	2004	2004	2004
ISBN	0-07-230493-6	10: 0072536055	10: 0072962623

This Appendix contains tabulated information on the initial determination of high school (at 9th Grade level) appropriate engineering analytic and predictive principles and computational formulas for the subject of statics; this determination is based on the satisfaction of pre-requisite mathematics and science (namely, physics) education, as mandated by Georgia Performance Standards established by the State of Georgia Department of Education (available at https://www.georgiastandards.org/Pages/Default.aspx). The above-mentioned principles and computational formulas have been extracted from one of the most popular university undergraduate lower-division textbook on statics; associated reference books have been used as well (see *Figures 1A, 1B*, and *1C*). The Appendix contains the following:

• Part One – Initial Determination of High School (9th Grade) Appropriate Statics Topics: This Part covers the 1st, 2nd and 3rd of the above-listed 5 major steps of the proposed study (i.e., "preliminary selection of high school appropriate engineering topic," "presentation of data to faculty advisors for review," and "presentation of data to a panel of university faculty for validation and endorsement"); and it contains the <u>Statics Topic List (Engineering Topics Mathematics and Science Pre-requisite Completion Chart for the Subject of Statics</u>), on pages 14-36. As shown in Figures 2A and 2B, on the tabulated list, the columns listing the mathematics and physics pre-requisites for the study of each statics topic are listed on the right of the column containing the titles of the chapters and sections with associated formulas, which are symbolic representations of engineering analytic and predictive principles. The list will serve two purposes:

- 1. For data review and validation: The list will be submitted to Dr. Robert Wicklein, Dr. John Mativo, and Dr. Roger Hill at the College of Education, the University of Georgia, for review, and for validation of the findings at technical level, in terms of validity of pre-requisite sequence and of high school students' preparedness for learning the engineering knowledge content identified therein. Dr. Robert Wicklein is a veteran educator profoundly and broadly experienced in teaching both K-12 and university students engineering design and technology. Dr. John Mativo has strong academic background and long history of professional practice in both mechanical and electrical engineering, and over 15 years of working experience in university engineering instruction as well as in the development of K-12 appropriate engineering curriculum. Dr. Roger Hill is a veteran professor in the area of workforce education and is very knowledgeable about K-12 education process. All of them possess great expertise in making judgment on the feasibility of infusing specific engineering knowledge content into K-12 curriculum. To facilitate such review and validation, proposed procedures are available on pages 8-13. After Dr. Robert Wicklein, Dr. Roger Hill and Dr. John Mativo complete the review and validation process, the list would be edited to make corrections to all possible errors and mistakes; and if necessary and possible, the corrected list might be submitted to a panel of university faculty for additional validation and endorsement; and the potential members of this panel would be selected among engineering processors with experience teaching statics course for at least three semesters in an ABET-accredited undergraduate engineering program, from four-year universities granting master's and/or doctoral degrees in mechanical and civil engineering.
- 2. <u>As part of the 1st round of the proposed four-round five-point Likert Scale Delphi study</u>: The expert opinions on the relative importance of each topic of statics (with analytic principles and computational formulas), collected from the review and validation process conducted by the above professors will be counted as part of the data for the first round of the Delphi study and statistically analyzed and processed accordingly, so as to prepare for the second round of the proposed Delphi survey with the above-mentioned five Groups of Participants.
- <u>Part Two 1st Round of Delphi Five-Point Likert Scale Survey Forms</u>: This Part prepares for the 4th of the above-listed 5 major steps of the proposed study; and it contains two survey forms (i.e., the first round of the "4-round Delphi study using 5-point Likert Scale"). The Survey Forms will be presented to the above-mentioned five Groups of Participants for the first round of the proposed Delphi survey. To facilitate the survey, detailed information on how to fill out survey forms are available on pages 37-43.

- <u>Statics Survey Form A (1st Round of Delphi Likert Scale Questionnaire on the Importance of Various Statics Topics</u> <u>Selected for High School Engineering Curriculum (For the Pre-calculus Portion)</u>: As the name implies, this list covers only the statics topics with computational formulas requiring no calculus related skills. (pp. 44-52).
- 2. <u>Statics Survey Form B (Delphi Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for</u> <u>High School Engineering Curriculum (For the Calculus Portion)</u>: As the name implies, this list covers only the statics topics with computational formulas requiring calculus related skills. (pp. 53-64).
- <u>Part Three Findings from the Research Project</u>: This Part contains tabulated lists showing the results of this research project, which might be used as reference in the future endeavors to infuse statics related engineering analytic and predictive principles and computational skills into a potentially viable high school engineering and technology curriculum, which shall be based on the organic and seamless integration of solid mastery of engineering analytic and predictive principles and innovative application of engineering design process.
 - List 1A. Pre-Calculus Based Statics Topics That Possibly Could Be Taught at 9th Grade: The statistic summary of data at the end of this list (p. 69) indicates that a significant portion of statics knowledge content covered in the selected undergraduate level textbook could possibly be taught to high school students. 58.7% of all Sections, and 56.0% of the volume in the selected textbook is based on pre-calculus mathematics and on principles of physics students are supposed to learn before or by 9th Grade, according to Georgia Performance Standards (p. 69).
 - List 1B. Pre-Requisite Mathematics and Science Topics to Be Reviewed Before Teaching the Pre-Calculus Portion of <u>Statics Topics to 9th Grade Students</u>: This list includes 16 sets of mathematics principles and skills, as well as7 sets of physics principles and skills that are needed as pre-requisites or as important topics to be reviewed for the effective learning of statics topics initially determined as appropriate for 9th Grade students (p. 171).
 - <u>List 2A. Calculus Base Statics Topics for Post-Secondary Engineering Education</u>: Topics of statics on this list are either recommended for post-secondary engineering education, or for inclusion as application problems in 11th or 12th Grade Advanced Placement Calculus course (p. 71).
 - List 2B. Pre-Requisite Math and Science Topics to Be Reviewed Before Teaching the Calculus Portion of Statics <u>Topics</u>: This list includes 33 sets of mathematics principles and skills, as well as 10 sets of physics principles and skills that are needed as pre-requisites or as important topics to be reviewed for the effective learning of statics topics initially

recommended either for university engineering students or for high school 11th or 12th Grade students enrolled in Advanced Placement Calculus courses (p. 72).

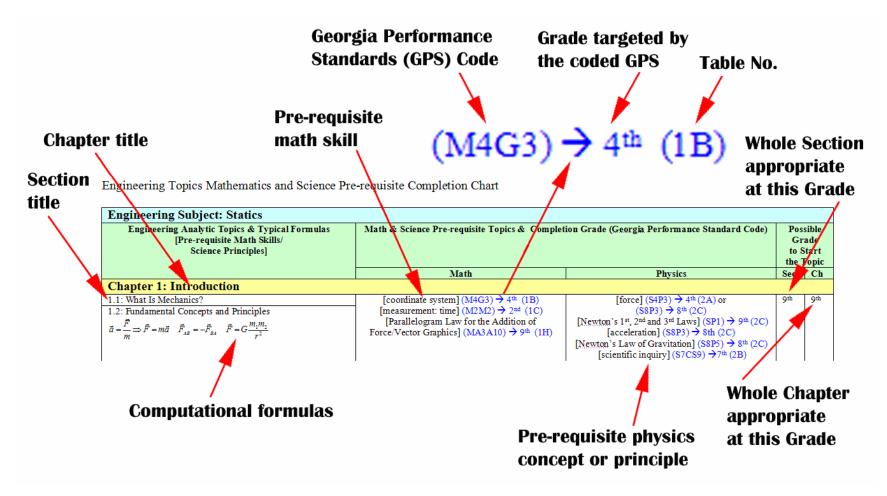


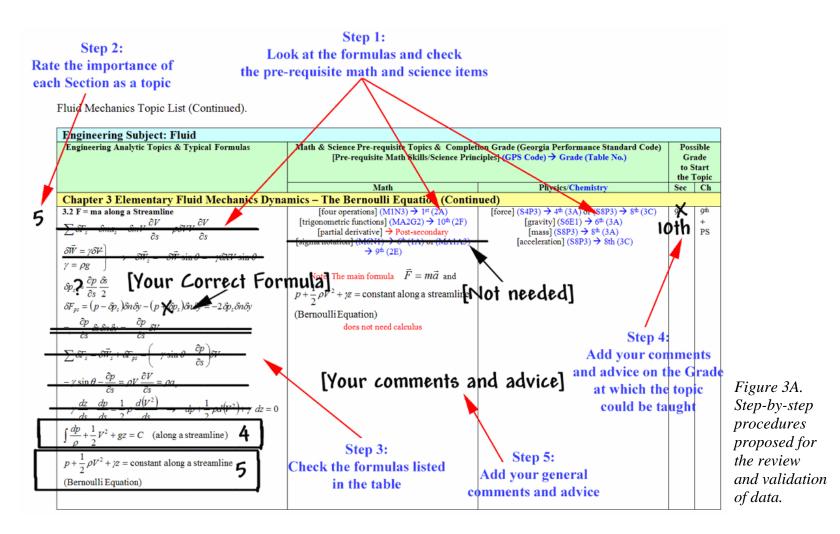
Figure 2A. Engineering Topics Mathematics and Science Pre-requisite Completion Chart for the Subject of Statics.

Project Title: High School Appropriate Engineering Content Knowledge (Appendix 3A) WFED 7650-Applied Project in Workforce Education Professors: Dr. Robert Wicklein & John Mativo Student: Edward Locke, University of Georgia

Engineering Analytic Topics & Typical Formulas [Pre-requisite Math Skills/ Science Principles]	Math & Science Pre-requisite Topics & Comp Cod	· · · · · · · · · · · · · · · · · · ·	Gr to Sta	sible ade art the pic
	Math	Physics	Sec	Ch
Chapter 8: Friction (Continued)				
8.10: Belt Friction $\ln \frac{T_2}{T_1} = \mu_z \beta \frac{T_2}{T_1} = e^{\mu_z \beta}$ (For other formulas, refer to pp. 451-452)	[summation/addition] (M6N1) → 6 th (2A) [four operations] (M1N3) → 1 st (2A) + (M2N3) → 2 nd (2A), or (M7N1) → 7 th (2A) [trigonometric functions] (MA2G2) → 10 th (2F) → To be taught as a special math topic [logarithmic functions] (MA2A4) → 10 th (2E) → To be taught as a special math topic [integration] → 12 th (to be taught) [differentiation] → 12 th (to be taught)	[force] (\$4P3) → 4 th (3A) or (\$8P3) → 8 th (3C) Whole chapter	PS	PS
Integration differentiat covered at	tion	apropriate for ' university underg statics course	rad	uat

Figure 2B. Notation for undergraduate level appropriate statics topics.

Part One: Initial Determination of High School (9th Grade) Appropriate Statics Topics


Proposed Procedures for Review and Validation

To facilitate review and validation of the initial selection of statics topics that could be possibly taught to students at 9th or above Grade, as listed in the *Statics Topic List*, the following procedures are hereby proposed:

- 1. Look at the formulas listed under the **Engineering Analytic Topics & Typical Formulas** column, and check the mathematics and science pre-requisite items under the **Math** and **Physics/Chemistry** columns; verify if there are necessary pre-requisite that are missing; if so, write a note in either the **Math** or **Physics/Chemistry** column; and if any listed item is not really needed, cross it out with a horizontal strikethrough (as shown on *Figure 3A*);
- 2. Rate the importance of each Section as a topic in a potentially viable 9th or above Grade statics subject, and write a number representing its "importance" value (*Figure 3A*), using the five-point Likert Scale (*Figure 3B*);
- 3. Check the formulas listed under the **Engineering Analytic Topics & Typical Formulas** column, and use symbols shown in *Figure 3B* to indicate your expert opinion and advice about each formula;

Project Title: High School Appropriate Engineering Content Knowledge (Appendix 3A) WFED 7650-Applied Project in Workforce Education Professors: Dr. Robert Wicklein & John Mativo Student: Edward Locke, University of Georgia

- 4. Add your comment and advice on the Grade at which the topic should be taught to pre-collegiate students;
- 5. Add your general comments and advice in the empty space.

Project Title: High School Appropriate Engineering Content Knowledge (Appendix 3A) WFED 7650-Applied Project in Workforce Education Professors: Dr. Robert Wicklein & John Mativo Student: Edward Locke, University of Georgia

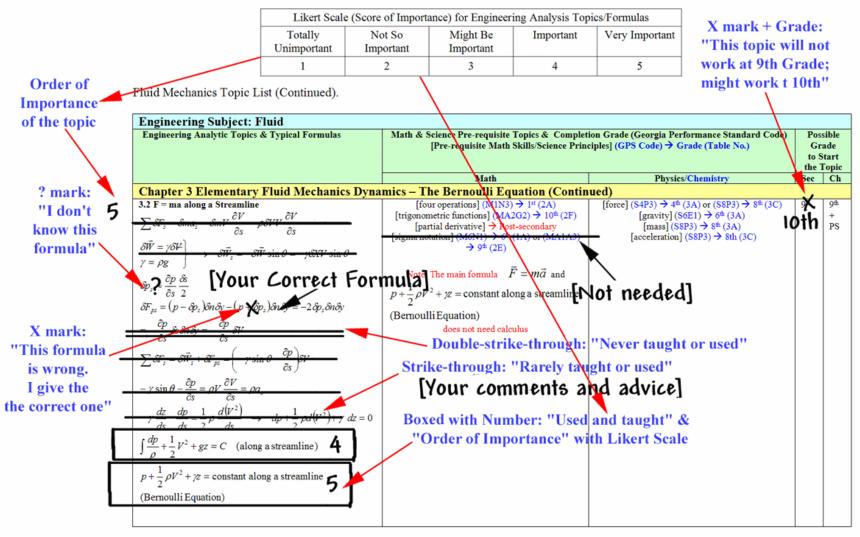


Figure 3B. Likert Scale (top) and symbols to be used for the expression of expert opinion and offer of advice.

Notes about the Statics Analytic Principles and Formulas

The leftmost column in the *Statics Topic List* (Engineering Topics Mathematics and Science Pre-requisite Completion Chart for the Subject of Statics) contains

- 1. The titles of each section under a particular chapter in the selected textbook, which in general represent particular sets of statics related engineering analytic and predictive principles, in a qualitative and explanatory way;
- 2. Computational formulas, which symbolically represent the above engineering analytic and predictive principles, in a quantitative and mathematical way.

As shown in *Figure 3B*, the formulas extracted from the selected textbook might by categorized into five groups, corresponding to the five different symbols shown in *Figure 3B*, which could be used by the above-mentioned professors from the University of Georgia and other schools to indicate their expert opinions and advices about each formula:

- 1. Formulas that engineering professors actually teach in classroom lectures and that practicing engineers use in engineering design projects: These are the important ones to be included in a potentially viable K-12 engineering curriculum that shall be based on cohesive and systemic mastery of engineering analytic and predictive principles and skills. For any of these formulas, a box could be used together with a number representing its order of importance according to the five-point Likert Scale (1 = Totally Unimportant, 2 = Not So Important, 3 = Might Be Important, 4 = Important, or 5 = Very Important).
- 2. Formulas that are rarely used in either classroom lectures or in field practice, but are used by the original discoverer of a particular set of analytic principles to derive other formulas that are actually used in classroom lecture or in field practice: Some of these "intermediate" formulas might not be used often, in other words, they are "rarely taught or used." For any of these formulas, a strikethrough could be used. If a big enough percentage of participants (maybe 85% or above) place a strikethrough on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. Interestingly enough, in some cases, rarely used calculus-based "intermediate" formulas are used to derive a final one that is based on

pre-calculus mathematics skills and is actually used in most homework assignments and design projects; in this case, if the "intermediate" formulas are removed from consideration, then the entire topic of fluid mechanics could be re-classified as appropriate for 9th Grade. For example, in fluid mechanics, the main formula $\vec{F} = m\vec{a}$ and

 $p + \frac{1}{2}\rho V^2 + \gamma z$ = constant along a streamline (Bernoulli Equation) do not need calculus, and thus, could be taught to 9th

Grade students. This type of formulas will make the list shorter and shorter as the proposed Delphi study moves to the next round of survey. Some of these formulas might not be in the selected textbook; I derived them for fun, sometimes with the help of my former engineering professor, Dr. Samuel Landsberger, at California State University Los Angeles.

- 3. Formulas that are particular to certain conditions and in real classroom lectures or field practice are, for all practical purposes, are close to be "never used:" For any of these formulas, a double-strikethrough could be used. If a big enough percentage of participants (maybe 75% or above) place a double-strikethrough on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. This type of formulas will also make the list shorter and shorter as the proposed Delphi study moves to the next round of survey.
- 4. Formulas that even experienced university engineering professors or practicing engineers might "not understand:" This is amazing but totally correct and yes, absolutely normal! There are formulas that even experienced professors might say "I do not understand this" or "I need to read the context in the book to figure this out." For any of these formulas, the participants should generally not seek to understand them (doing so does not serve the purpose of studying the relative importance of each computational formula); but instead, a question mark (?) could be used. If a big enough percentage of participants (maybe 65% or above) place a question mark (?) on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. Indeed, it makes little sense to include this type of formulas to a potentially viable K-12 engineering curriculum. This type of formulas will also make the list shorter and shorter as the proposed Delphi study moves to the next round of survey. Some of these formulas might not be in the selected textbook; I derived them for fun, sometimes with the help of my former engineering professor, Dr. Samuel Landsberger, at California State University Los Angeles.

5. <u>Formulas that are wrong for any reasons (my typing errors, or the authors' errors, etc.)</u>: For any of these formulas, a cross (X) could be used and the correct formulas should be given if possible. The correction would be included in the survey forms for the subsequent rounds of the four-round five-point Likert Scale Delphi study.

For convenience of statistic analysis of expert opinions and advice, it is requested that all participants print each letter of their comment legibly and separately, using fonts commonly used in engineering notebooks.

Statics Topics List

Engineering Topics Mathematics and Science Pre-requisite Completion Chart for the Subject of Statics

Engineering Analytic Topics & Typical Formulas		ion Grade (Georgia Performance Standard Code) ciples] (GPS Code) → Grade (Table No.)	de) Pos Gr to S the '	
	Math	Physics	Sec	Ch
Chapter 1: Introduction				
1.1: What Is Mechanics?	[coordinate system] (M4G3) \rightarrow 4 th (2B)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	9 th
1.2: Fundamental Concepts and Principles	[measurement: time] (M2M2) $\rightarrow 2^{nd}$ (2C)	[Newton's 1^{st} , 2^{nd} and 3^{rd} Laws] (SP1) $\rightarrow 9^{th}$ (3C)		
$\vec{a} = \frac{\vec{F}}{m} \Rightarrow \vec{F} = m\vec{a} \vec{F}_{AB} = -\vec{F}_{BA} \vec{F} = G\frac{m_1m_2}{r^2}$	[Parallelogram Law for the Addition of Force/Vector Graphics] $(MA3A10) \rightarrow 11^{\text{th}}$ (2H) \rightarrow To be taught as a special math topic	[acceleration] (S8P3) → 8th (3C) [Newton's Law of Gravitation] (S8P5) → 8 th (3C) [scientific inquiry] (S7CS9) → 7 th (3B)		
1.3: Systems of Units	[unit conversion] (M6M1) \rightarrow 6 th (2C)	N/A	6 th	-
1.4: Conversion from One System of Units to Another		IN/A	0	
1.5: Method of Problem Solution	[problem-solving] (M3N5) \rightarrow 3 rd (2A)	N/A	3 rd	-
I.6: Numerical Accuracy	$[percent] (M5N5) \rightarrow 5^{th} (2A)$	N/A	5 th	-
Chapter 2: Statics of Particles			<u> </u>	
2.1: Introduction	[four operations] (M1N3) \rightarrow 1 st (2A) +	[force] (S4P3) \rightarrow 4 th (3A)	4 th	9 th
Forces in a Plane	$(M2N3) \rightarrow 2^{nd} (1A), \text{ or } (M7N1) \rightarrow 7^{th} (2A)$			
2.2: Force on a Particle. Resultant of Two Forces	[coordinate system] (M4G3) \rightarrow 4 th (2B)			
2.3: Vectors	[vector graphics] (MA3A10) \rightarrow 9 th (2H)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	1
2.4: Addition of Vectors	\rightarrow To be taught as a special math topic			
2.5: Resultant of Several Concurrent Forces				
2.6: Resolution of a Force into Components	[vector graphics] (MA3A10) \rightarrow 9 th (2H)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	
2.7: Rectangular Components of a Force. Unit Vectors	[trigonometric functions] (MA2G2) \rightarrow 9 th (2F)			
2.8: Addition of Forces by Summing <i>x</i> and <i>y</i> Components	[four operations] (M1N3) \rightarrow 1 st (2A) +	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	8 th	
$\vec{F} = F_x \hat{i} + F_y \hat{j} F_x = F \cos \theta$	$(M2N3) \rightarrow 2^{nd} (2A), \text{ or } (M7N1) \rightarrow 7^{th} (2A)$			
$F_y = F \sin \theta \tan \theta = \frac{F_y}{F_x} F = \sqrt{F_x^2 + F_y^2}$	[square root] (M8N1) \rightarrow 8 th (2A) [trigonometric functions] (MA2G2) \rightarrow 10 th (2F)			
	→ To be taught as a special math topic [coordinate system] (M4G3) → 4^{th} (2B)			
.9: Equilibrium of a Particle	[coordinate system] (M403) \rightarrow 4 (2B) [sigma notation] (M6N1) \rightarrow 6 th (1A) or (MA1A3)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (2C)	9 th	-
$R = \sum F = F_1 + F_2 + = 0 \implies R_x = \sum F_x = 0 R_y = \sum F_y = 0$	\rightarrow 9 th (2E) \rightarrow To be taught as a special math topic			
$R_z = \sum F_z = 0$ $R_z = \sum F_z = 0$	[four operations] (M1N3) \rightarrow 1 st (2A) + (M2N3) \rightarrow 2 nd (1A), or (M7N1) \rightarrow 7 th (2A)			

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gr to S	ssible rade Start <u>Topic</u>
	Math	Physics	Sec	Ch
Chapter 2: Statics of Particles (Continued)2.10: Newton's First Law of Motion2.11: Problems Involving the Equilibrium of a Particle.	[four operations] (M1N3) \rightarrow 1 st (2A) + (M2N3) \rightarrow 2 nd (1A), or (M7N1) \rightarrow 7 th (2A)	[Newton's 1 st , 2 nd and 3 rd Laws] (SP1) \rightarrow 9 th (3C) [acceleration] (S8P3) \rightarrow 8th (3C)	9 th	9 th
Free-Body Diagrams Forces in Space 2.12: Rectangular Components of a Force in Space $F_y = F \cos \theta_y$ $F_h = F \sin \theta_y$ $F_x = F_h \cos \phi = F \sin \theta_y \cos \phi$ $F_z = F_h \sin \phi = F \sin \theta_y \sin \phi$ $F^2 = F_y + F_h = F_y + F_x + F_z \rightarrow F = \sqrt{F_x + F_y + F_z}$ $F_x = F \cos \theta_x$ $F_y = F \cos \theta_y$ $F_z = F \cos \theta_z$ $(0^\circ < \theta_{x,y,z} < 180^\circ)$ $\vec{F} = F_x \hat{i} + F_y \hat{j} + F_z \hat{k}$ $\vec{F} = F(\cos \theta_x \hat{i} + \cos \theta_y \hat{j} + \cos \theta_z \hat{k})$ $\cos \theta_x = \frac{F_x}{F} = \frac{d_x}{d} = \frac{R_x}{R}$ $\cos \theta_y = \frac{F_y}{F} = \frac{d_y}{d} = \frac{R_y}{R}$ $\cos \theta_z = \frac{F_z}{F} = \frac{d_z}{d} = \frac{R_z}{R}$ $\theta_{x(y,z)} = \cos^{-1} \frac{F_{x(y,z)}}{F} = \cos^{-1} \frac{d_{x(y,z)}}{d}$ $F = \sqrt{F_x^2 + F_y^2 + F_z^2}$ $\hat{\lambda} = \cos \theta_x \hat{i} + \cos \theta_y \hat{j} + \cos \theta_z \hat{k}$ $\hat{\lambda} = \frac{\vec{F}}{F}$ $\hat{i} = \frac{d_x}{d}$ $\hat{j} = \frac{d_y}{d}$ $\hat{k} = \frac{d_z}{d}$ $\cos^2 \theta_x + \cos^2 \theta_y + \cos^2 \theta_z = 1 \rightarrow \hat{\lambda}_x^2 + \hat{\lambda}_y^2 + \hat{\lambda}_z^2 = 1$	[four operations] (M1N3) \rightarrow 1 st (2A) + (M2N3) \rightarrow 2 nd (1A), or (M7N1) \rightarrow 7 th (2A) [square root] (M8N1) \rightarrow 8 th (2A) [trigonometric functions] (MA2G2) \rightarrow 10 th (2F) \rightarrow To be taught as a special math topic [coordinate system] (M4G3) \rightarrow 4 th (2B)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	-

Engineering Analytic Topics & Typical Formulas		Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Possible Grade to Start the Topic	
	Math	Physics	Sec	Ch	
Chapter 2: Statics of Particles (Continued)					
2.13: Force Defined by Its Magnitude and Two Points on Its Line of Action $\overline{MN} = d_x\hat{i} + d_y\hat{j} + d_z\hat{k}$	[four operations] (M1N3) \rightarrow 1 st (2A) + (M2N3) \rightarrow 2 nd (1A), or (M7N1) \rightarrow 7 th (2A) [square root] (M8N1) \rightarrow 8 th (1A) [trigonometric functions] (MA2G2) \rightarrow 10 th (2F)	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [Newton's 1 st , 2 nd and 3 rd Laws] $(SP1) \rightarrow 9^{th} (3C)$	9 th	9 th	
$\hat{\lambda} = \frac{\overline{MN}}{MN} = \frac{1}{d} \left(d_x \hat{i} + d_y \hat{j} + d_z \hat{k} \right)$ $d_{x(y,z)} = x(y,z)_2 - x(y,z)_1 d = \sqrt{d_x^2 + d_y^2 + d_z^2}$	→ To be taught as a special math topic [coordinate system] (M4G3) → 4 th (2B)				
$\vec{F} = F\hat{\lambda} = \frac{F}{d} \left(d_x^2 \hat{i} + d_y^2 \hat{j} + d_z^2 \hat{k} \right)$					
$F_x = \frac{Fd_x}{d} F_y = \frac{Fd_y}{d} F_z = \frac{Fd_z}{d}$					
2.14: Addition of Concurrent Forces in Space $\vec{R} = \sum \vec{F} R = \sqrt{R_x^2 + R_y^2 + R_z^2}$ $R_x \hat{i} + R_y \hat{j} + R_z \hat{k} = (\sum F_x)\hat{i} + (\sum F_y)\hat{j} + (\sum F_z)\hat{k}$	[four operations] (M1N3) \rightarrow 1 st (2A) + (M2N3) \rightarrow 2 nd (1A), or (M7N1) \rightarrow 7 th (2A) [square root] (M8N1) \rightarrow 8 th (2A) [trigonometric functions] (MA2G2) \rightarrow 10 th (2F) \rightarrow To be taught as a special math topic	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) [Newton's 1 st , 2 nd and 3 rd Laws] (SP1) \rightarrow 9 th (3C)	9 th		
	[coordinate system] (M4G3) \rightarrow 4 th (2B)				
2.15: Equilibrium of a Particle in Space $R = \sum F = F_1 + F_2 + \dots = 0 \rightarrow R_x = \sum F_x = 0 R_y = \sum F_y = 0 R_z = \sum F_z = 0$ $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \times \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $R_x = \sum F_x = 0 aF_1 + bF_2 + cF_3 = 0$ $R_y = \sum F_y = 0 dF_1 + eF_2 + fF_3 = 0$ $R_z = \sum F_z = 0 gF_1 + hF_2 + iF_3 = 0$ $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \times \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} aF_1 + bF_2 + cF_3 \\ dF_1 + eF_2 + fF_3 \\ gF_1 + hF_2 + iF_3 \end{bmatrix}$	[coordinate system] (M4G3) \rightarrow 4 th (2B) [four operations] (M1N3) \rightarrow 1 st (2A) + (M2N3) \rightarrow 2 nd (1A), or (M7N1) \rightarrow 7 th (2A) [linear algebra](MA2A6) (MA2A7) (MA2A8) (MA2A9) \rightarrow 10 th (2G) \rightarrow To be taught as a special math topic	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) [Newton's 1 st , 2 nd and 3 rd Laws] (SP1) \rightarrow 9 th (3C)	9 th		

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gr to S	Possible Grade to Start he Topic	
	Math	Physics	Sec	Ch	
Chapter 3: Rigid Bodies - Equivalent Systems			I di		
 3.1: Introduction 3.2: External and Internal Forces 3.3: Principle of Transmissibility. Equivalent Forces 	[four operations] (M1N3) \rightarrow 1 st (2A) + (M2N3) \rightarrow 2 nd (2A) [geometry: point, axis/line, 3D body] (M6G1) (M6G2) (M6M3) \rightarrow 6 th (2B)	[force] (S4P3) \rightarrow 4 th (3A) [motion] (SKP2) \rightarrow K (3A)	6 th	9 th	
3.4: Vector Product of Two Vectors $\vec{V} = \vec{P} \times \vec{Q}$ $V = PQ \sin \theta$ $\vec{V} \perp \vec{P}$ $\vec{V} \perp \vec{Q}$ $\vec{V} \perp Plane_{\vec{P},\vec{Q}}$ $\vec{P} \times (\vec{Q}_1 + \vec{Q}_2) = \vec{P} \times \vec{Q}_1 + \vec{P} \times Q_2$ $(\vec{P} \times \vec{Q}) \times \vec{S} \neq \vec{P} \times (\vec{Q} \times \vec{S})$ $\vec{V} = \vec{Q} \times \vec{P} = -(\vec{P} \times \vec{Q})$ $\vec{Q} \times \vec{P} \neq \vec{P} \times \vec{Q}$ $\vec{P} \times \vec{Q} = -\vec{V}$ $\vec{P} \times (\vec{Q}_1 + Q_2) = \vec{P} \times \vec{Q}_1 + \vec{P} \times Q_2$ $\vec{Q} \times \vec{P} \neq \vec{P} \times \vec{Q}$ $\vec{V} = \vec{Q} \times \vec{P} = -(\vec{P} \times \vec{Q})$ $\vec{P} \times \vec{Q} = -\vec{V}$ $\vec{V} = \vec{P} \times \vec{Q}$ $(\vec{P} \times \vec{Q}) \times \vec{S} \neq \vec{P} \times (\vec{Q} \times \vec{S})$	[trigonometric functions] (MA2G2) → 10 th (2F) → To be taught as a special math topic [cross product] → To be taught as a special math topic	[force] $(S4P3) \rightarrow 4^{\text{th}} (3A) \text{ or } (S8P3) \rightarrow 8^{\text{th}} (3C)$ [motion] $(SKP2) \rightarrow K (3A)$	9 th		
3.5: Vector Products Expressed in Terms of Rectangular Components $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$ $\hat{i} \times \hat{j} = \hat{k}$ $\hat{j} \times \hat{k} = \hat{i}$ $\hat{k} \times \hat{i} = \hat{j}$ $\hat{i} \times \hat{k} = -\hat{j}$ $\hat{j} \times \hat{i} = -\hat{k}$ $\hat{k} \times \hat{j} = -\hat{i}$ $\vec{P} = P_x \hat{i} + P_y \hat{j} + P_z \hat{k}$ $\vec{Q} = Q_x \hat{i} + Q_y \hat{j} + Q_z \hat{k}$ $\vec{V} = \vec{P} \times \vec{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{vmatrix} = V_x \hat{i} + V_y \hat{j} + V_z \hat{k}$ $V_x = P_y Q_z - P_z Q_y$ $V_y = -(P_x Q_z - P_z Q_x) = P_z Q_x - P_x Q_z$ $V_z = P_x Q_y - P_y Q_x$	[trigonometric functions] (MA2G2) → 10 th (2F) [cross product] → To be taught as a special math topic [dot product] → To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	9 th		

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Complet [Pre-requisite Math Skills/Science Princ		Gr to S	sible rade Start Topic
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent System	s of Forces (Continued)			
3.6: Moment of a Force about a Point	[four operations]	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	9 th
$\vec{M}_0 = \vec{r} \times \vec{F}$ $M_0 = rF\sin\theta = Fd$	$(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$			
$ec{r}=ec{v}_{position}^{O ightarrow A}$ $ heta=igstarrow_{ ightarrow ar{F}}$ $d\perpec{F}$	[geometry: point, axis/line, 3D body] (M6G1) (M6G2) (M6M3) \rightarrow 6 th (2B)			
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \end{vmatrix}$	[\cross product] \rightarrow To be taught as a special math			
$\vec{M}_0 = \vec{r} \times \vec{F} = \begin{vmatrix} x & y & z \end{vmatrix} = M_x \hat{i} + M_y \hat{j} + M_z \hat{k}$	topic			
$\vec{M}_{0} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{vmatrix} = M_{x}\hat{i} + M_{y}\hat{j} + M_{z}\hat{k}$	$[dot product] \rightarrow To be taught as a special math tonic$			
$M_{x} = yF_{z} - zF_{y}$ $M_{y} = -(xF_{z} - zF_{x}) = zF_{x} - xF_{z}$ $M_{z} = xF_{y} - yF_{x}$	topic [linear algebra](MA2A6) (MA2A7)			
$\prod_{x} j_{z} \sum_{y} j_{y} \sum_{y} j_{y} \sum_{x} j_{y} \sum_{x} j_{x} \sum_{x$	$(MA2A8) (MA2A9) \rightarrow 10^{\text{th}} (2G)$			
	\rightarrow To be taught as a special math topic			
3.7: Varignon's Theorem	[four operations]	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	-
$\vec{r} \times (\vec{F_1} + \vec{F_2} +) = \vec{r} \times \vec{F_1} + \vec{r} \times \vec{F_2} +$	$(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$			
$r \sim (\mathbf{r}_1 + \mathbf{r}_2 + \dots) = r \sim \mathbf{r}_1 + r \sim \mathbf{r}_2 + \dots$	[cross product] \rightarrow To be taught as a special math			
	topic			
	[dot product] \rightarrow To be taught as a special math			
3.8: Rectangular Components of the Moment of a Force	[four operations]	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	-
	$(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$	[10100] (3413) 74 (3A) 01 (3613) 78 (30)	,	
$\begin{vmatrix} i & j & k \end{vmatrix}$	$[cross product] \rightarrow To be taught as a special math$			
$\vec{M}_{P} = \vec{r}_{A/P} \times \vec{F} = \begin{vmatrix} x_{A/P} & y_{A/P} & z_{A/P} \end{vmatrix}$	topic			
$\vec{M}_B = \vec{r}_{A/B} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_{A/B} & y_{A/B} & z_{A/B} \\ F_x & F_y & F_z \end{vmatrix}$				
$\vec{r}_{A/B} = x_{A/B}\hat{i} + y_{A/B}\hat{j} + z_{A/B}\hat{k}$				
$x_{A/B} = x_A - x_B$ $y_{A/B} = y_A - y_B$ $z_{A/B} = z_A - z_B$				

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gr to S	sible rade Start Topic
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent System	ns of Forces (Continued)			
3.9: Scalar Product of Two Vectors $\vec{P} \cdot \vec{Q} = PQ \cos \theta = P_x Q_x + P_y Q_y + P_z Q_z \theta = \angle_{\vec{P} \to \vec{Q}}$ $\vec{P} \cdot \vec{Q} = \vec{Q} \cdot \vec{P} \vec{P} \cdot (\vec{Q}_1 + \vec{Q}_2) = \vec{P} \cdot \vec{Q}_1 + \vec{P} \cdot \vec{Q}_2$	[four operations] $(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$ [dot product] \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	9 th	9 th
$P_{oL} = \vec{P} \bullet \hat{\lambda} = P_x \cos \theta_x + P_y \cos \theta_y + P_z \cos \theta_z$ (More formulas on p. pp. 94-95)				
3.10: Mixed Triple Product of Three Vectors $\vec{S} \bullet (\vec{P} \times \vec{Q}) = \begin{vmatrix} S_x & S_y & S_z \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{vmatrix}$	[four operations] $(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$ [cross product] \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	9 th	
3.11: Moment of a Force about a Given Axis $M_{OL} = \hat{\lambda} \bullet \vec{M}_{O} = \hat{\lambda} \bullet (\vec{r} \times \vec{F}) = \begin{vmatrix} \lambda_{x} & \lambda_{y} & \lambda_{z} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{vmatrix}$	[four operations] $(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$ [dot product] \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	9 th	
(More formulas on p. pp. 98) 3.12: Moment of a Couple $\vec{M} = \vec{r} \times \vec{F}$ $M = rF \sin \theta = Fd$	[four operations] (M1N3) \rightarrow 1 st (1A) + (M2N3) \rightarrow 2 nd (2A) [trigonometric functions] (MA2G2) \rightarrow 10 th (2F) \rightarrow To be taught as a special math topic [cross product] \rightarrow To be taught as a special math topic	[force] $(S4P3) \rightarrow 4^{\text{th}} (3A) \text{ or } (S8P3) \rightarrow 8^{\text{th}} (3C)$ [motion] $(SKP2) \rightarrow K (3A)$ [lever] $(S4P3) \rightarrow 4^{\text{th}} (3A)$	9 th	
3.13: Equivalent Couples $F_1d_1 = F_2d_2$	[four operations] $(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$ [geometry: point, axis/line, 3D body] $(M6G1) (M6G2) (M6M3) \rightarrow 6^{th} (2B)$	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [motion] $(SKP2) \rightarrow K (3A)$ [lever] $(S4P3) \rightarrow 4^{th} (3A)$	6 th	

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Complet [Pre-requisite Math Skills/Science Princ	ion Grade (Georgia Performance Standard Code) :iples] (GPS Code) → Grade (Table No.)	Gr to S	sible ade Start Topic
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent Systems	s of Forces (Continued)			
3.14: Addition of Couples $\vec{M} = \vec{r} \times \vec{R} = \vec{r} \times \left(\vec{F}_1 + \vec{F}_2\right) = \vec{r} \times \vec{F}_1 + \vec{r} \times \vec{F}_2 \vec{M} = \vec{M}_1 + \vec{M}_2$	[four operations] $(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$ [cross product] \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	9 th	9 th
3.15: Couples Can Be Represented by Vectors	[vector graphics] (MA3A10) \rightarrow 11 th (2H) \rightarrow To be taught as a special math topic	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	
3.16: Resolution of a Given Force Into a Force at <i>O</i> and a Couple $\vec{M}_{O'} = \vec{r}' \times \vec{F} = (\vec{r} + \vec{s}) \times \vec{F} = \vec{r} \times \vec{F} + \vec{s} \times \vec{F}$ $\vec{M}_{O'} = \vec{M}_{O} + \vec{s} \times \vec{F}$	[four operations] $(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$ [cross product] \rightarrow To be taught as a special math topic	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	9 th	
3.17: Reduction of a System of Forces to One Force and One Couple $\vec{R} = \sum \vec{F} \vec{M}_{O}^{R} = \sum \vec{M}_{O} = \sum (\vec{r} \times \vec{F})$ $\vec{M}_{O'}^{R} = \vec{M}_{O} + \vec{s} \times \vec{R} \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ $\vec{F} = F_{x}\hat{i} + F_{y}\hat{j} + F_{z}\hat{k} \vec{R} = R_{x}\hat{i} + R_{y}\hat{j} + R_{z}\hat{k}$ $\vec{M}_{O}^{R} = M_{x}^{R}\hat{i} + M_{y}^{R}\hat{j} + M_{z}^{R}\hat{k}$	[four operations] $(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$ [cross product] \rightarrow To be taught as a special math topic	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	
3.18: Equivalent Systems of Forces $\sum \vec{F} = \sum \vec{F}' \& \sum \vec{M}_0 = \sum \vec{M}'_0$ $\sum \vec{F} = \sum \vec{F}' and \sum \vec{M}_o = \vec{M}_o'$ $\sum F_x = \sum F'_x \sum F_y = \sum F'_y \sum F_z = \sum F'_z$ $\sum M_x = \sum M'_x \sum M_y = \sum M'_y \sum M_z = \sum M'_z$	[four operations] $(M1N3) \rightarrow 1^{st} (1A) + (M2N3) \rightarrow 2^{nd} (2A)$ [coordinate system] $(M4G3) \rightarrow 4^{th} (2B)$	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	8 th	
3.19: Equipollent Systems of Vectors	[vector graphics] (MA3A10) \rightarrow 11 th (2H) \rightarrow To be taught as a special math topic	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	
3.20: Further Reduction of a System of Forces	[coordinate system] (M4G3) \rightarrow 4 th (2B)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	8 th	

Engineering Analytic Topics & Typical Formulas		ion Grade (Georgia Performance Standard Code) :iples] (GPS Code) → Grade (Table No.)	Gr to S	ssible rade Start Topic
	Math	Physics	Sec	Ch
Chapter 3: Rigid Bodies - Equivalent Systems	s of Forces (Continued)			
3.21: Reduction of a System of Forces to a Wrench $p = \frac{M_1}{R} M_1 = \frac{\vec{R} \bullet \vec{M}_o^R}{R} p = \frac{M_1}{R} = \frac{\vec{R} \bullet \vec{M}_o^R}{R^2}$ $\vec{M}_1 = p\vec{R} \rightarrow \frac{\vec{M}_1 + \vec{r} \times \vec{R} = \vec{M}_o^R}{p\vec{R} + \vec{r} \times \vec{R} = \vec{M}_o^R}$	[four operations] (M1N3) → 1 st (1A) + (M2N3) → 2 nd (2A) [geometry: point, axis/line, 3D body] (M6G1) (M6G2) (M6M3) → 6 th (2B) [trigonometric functions] (MA2G2) → 10 th (2F) → To be taught as a special math topic [dot product] → To be taught as a special math topic [cross product] → To be taught as a special math topic	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [motion] $(SKP2) \rightarrow K (2A)$ [lever] $(S4P3) \rightarrow 4^{th} (2A)$	9 th	9 th
Chapter 4: Equilibrium of Rigid Bodies				
4.1: Introduction $\sum \vec{F} = 0 \sum F_x = 0 \sum F_y = 0 \sum F_z = 0$ $\sum \vec{M}_o = \sum (\vec{r} \times \vec{F}) = 0 \sum M_x = 0 \sum M_y = 0 \sum M_z = 0$ 4.2: Free-Body Diagram Equilibrium in Two Dimensions 4.3: Reactions at Supports and Connections for a Two- Dimensional Structure 4.4: Equilibrium of a Rigid Body in Two Dimensions $F_z = 0 M_x = M_y = 0 M_z = M_o$ $\sum F_x = 0 \sum F_y = 0 \sum M_o = 0$ $\sum M_A = 0 \sum M_B = 0 \sum M_C = 0$ 4.5: Statically Indeterminate Reactions. Partial Constraints 4.6: Equilibrium of a Two-Force Body	[sigma notation] (M6N1) → 6 th (1A) or (MA1A3) → 9 th (2E) → To be taught as a special math topic [coordinate system] (M4G3) → 4 th (2B)	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [Newton's 3 rd Law: Action and Reaction] $(SP1) \rightarrow 9^{th} (3C)$	9 th	9 th

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gr to S the '	ssible rade Start Topic
	Math	Physics	Sec	Ch
Chapter 4: Equilibrium of Rigid Bodies (Con		1	1 4	
Equilibrium in Three Dimensions 4.8: Equilibrium of a Rigid Body in Three Dimensions $\sum \vec{F} = 0$ $\sum \vec{M}_o = \sum (\vec{r} \times \vec{F}) = 0$	[sigma notation] (M6N1) → 6 th (1A) or (MA1A3) → 9 th (2E) → To be taught as a special math topic [coordinate system] (M4G3) → 4 th (2B)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) [Newton's 3 rd Law: Action and Reaction] (SP1) \rightarrow 9 th (3C)	9 th	9 th
$\sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$ $\sum M_x = 0 \qquad \sum M_y = 0 \qquad \sum M_z = 0$				
4.9: Reactions at Supports and Connections for a Three- Dimensional Structure				
Chapter 5: Distributed Forces: Centroids and				
5.1: Introduction	[coordinate system] (M4G3) \rightarrow 4 th (2B)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	PS	PS
Areas and Lines 5.2: Center of Gravity of a Two-Dimensional Body Plate: $\sum F_z$: $W = \Delta W_1 + \Delta W_2 + + \Delta W_n$	[sigma notation] (M6N1) → 6 th (1A) or (MA1A3) → 9 th (2E) → To be taught as a special math topic [integration] → 12 th (To be taught)	[Newton's Law of Gravitation] (S8P5) $\rightarrow 8^{\text{th}}$ (3C)		
$\sum M_{y}: \overline{x}W = x_{1} \Delta W + x_{2} \Delta W + \dots + x_{n} \Delta W$ $\sum M_{x}: \overline{y}W = y_{1} \Delta W + y_{2} \Delta W + \dots + y_{n} \Delta W$				
$W = \int dW \overline{x}W = \int xdW \overline{y}W = \int ydW$ Wire: $\sum M_y$: $\overline{x}W = \sum x\Delta W \sum M_x$: $\overline{y}W = \sum y\Delta W$				
5.3: Centroids of Areas and Lines Plate: $\Delta W = \gamma \Delta A$ $W = \gamma A$ $\bar{x}A = \int x dA$ $\bar{y}A = \int y dA$ Line: $\Delta W = \gamma a \Delta L$ $\bar{x}L = \int x dL$ $\bar{y}L = \int y dL$	[measurement: area, weight, thickness] (M6M1) (M6M2) $\rightarrow 6^{\text{th}}$ (2C) [integration] $\rightarrow 12^{\text{th}}$ (To be taught)	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [Newton's Law of Gravitation] $(S8P5) \rightarrow 8^{th} (3C)$	PS	

Engineering Analytic Topics & Typical Formulas		ion Grade (Georgia Performance Standard Code) ciples] (GPS Code) → Grade (Table No.)	Gr to S the '	sible ade Start <u>Fopic</u>
	Math	Physics	Sec	Ch
Chapter 5: Distributed Forces: Centroids an	d Centers of Gravity (Continued)			
	[integration] → 12 th (To be taught) [coordinate system] (M4G3) → 4 th (2B) [two-dimensional figures: circle, arc, triangle, ellipse, parabolic]	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [Newton's Law of Gravitation] $(S8P5) \rightarrow 8^{th} (3C)$	PS	PS
5.4: First Moments of Areas and Lines $\bar{x}A = Q_y = \int x dA \bar{y}A = Q_x = \int y dA$	 (M1G1) (M1G2) → 1st (1B) + (MA2G4) → 10th (2F) → To be taught as a special math topic [special two-dimensional figures: parabolic spandrel, general spandrel] → To be taught as a special math topic 			
5.5: Composite Plates and Wires $\overline{X} \sum W = \sum \overline{x}W \overline{Y} \sum W = \sum \overline{y}W$ $Q_y = \overline{X} \sum A = \sum \overline{x}A Q_x = \overline{Y} \sum A = \sum \overline{y}A$	[coordinate system] (M4G3) \rightarrow 4 th (2B) [sigma notation] (M6N1) \rightarrow 6 th (1A) or (MA1A3) \rightarrow 9 th (2E) \rightarrow To be taught as a special math topic [measurement: area, weight, thickness] (M6M1) (M6M2) \rightarrow 6 th (2C)	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [Newton's Law of Gravitation] $(S8P5) \rightarrow 8^{th} (3C)$	PS	
5.6: Determination of Centroids by Integration $Q_y = \overline{x}A = \int \overline{x}_{el} dA Q_x = \overline{y}A = \int \overline{y}_{el} dA$	[integration] \rightarrow 12 th (To be taught) [coordinate system] (M4G3) \rightarrow 4 th (2B) [areas of geometric shapes: circle, triangle, etc.] (M5M1) \rightarrow 5 th and (2B) (M6M2) \rightarrow 6 th (2C)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) [Newton's Law of Gravitation] (S8P5) \rightarrow 8 th (3C)	PS	-
5.7: Theorems of Pappus-Guldinus $A = 2\pi \overline{y}L$ $V = 2\pi \overline{y}A$	[integration: area of surface of revolution, curve, volume of body of revolution] $\rightarrow 12^{\text{th}}$ (To be taught)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) [Newton's Law of Gravitation] (S8P5) \rightarrow 8 th (3C)	PS	
5.8: Distributed Loads on Beams $W = \int_{O}^{L} w dx W = \int dA = A (OP)W = \int x dW (OP)A = \int_{O}^{L} x dA$	[coordinate system] (M4G3) \rightarrow 4 th (2B) [integration] \rightarrow 12 th (To be taught) [areas of geometric shapes: circle, triangle, etc.] (M5M1) \rightarrow 5 th and (2B) (M6M2) \rightarrow 6 th (2C)	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [Newton's Law of Gravitation] $(S8P5) \rightarrow 8^{th} (3C)$	PS	
5.9: Forces on Submerged Surfaces $w = bp = b\gamma h$	[areas of geometric shapes: circle, triangle, etc.] (M5M1) \rightarrow 5 th and (2B) (M6M2) \rightarrow 6 th (2C)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	8^{th} \rightarrow PS	

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gr to S	ssible rade Start Topic
	Math	Physics	Sec	Ch
Chapter 5: Distributed Forces: Centroids and	Centers of Gravity (Continued)			
Volumes5.10: Center of Gravity of a Three- Dimensional Body.Centroid of a Volume $\overline{x}W = \int xdW$ $\overline{y}W = \int ydW$ $\overline{z}W = \int zdW$	[coordinate system] (M4G3) \rightarrow 4 th (2B) [volume: sphere, cone, pyramid] (M5M4) \rightarrow 5 th (1B) (M6M3) \rightarrow 6 th (2B) (MA1G5) \rightarrow 9 th (2F)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) [Newton's Law of Gravitation] (S8P5) \rightarrow 8 th (3C)	PS	PS
$\overline{x}V = \int xdV \overline{y}V = \int ydV \overline{z}V = \int zdV$	[volume: ellipsoid, paraboloid] → To be taught as a special math topic			
5.11: Composite Bodies $\overline{X} \sum W = \sum \overline{x}W \overline{Y} \sum W = \sum \overline{y}W \overline{Z} \sum W = \sum \overline{z}W$	[integration] → 12 th (To be taught) [integration: area of surface of revolution, curve, volume of body of revolution]			
$\overline{X}\sum V = \sum \overline{x}V \overline{Y}\sum V = \sum \overline{y}V \overline{Z}\sum V = \sum \overline{z}V$	\rightarrow 12 th (To be taught)			
5.12: Determination of Centroids of Volumes by Integration $\overline{x}V = \int \overline{x}_{el} dV \overline{y}V = \int \overline{y}_{el} dV \overline{z}V = \int \overline{z}_{el} dV \overline{x}V = \int \overline{x}_{el} dV$				
Chapter 6: Analysis of Structures				
6.1: Introduction	[sigma notation] (M6N1) \rightarrow 6 th (1A) or (MA1A3)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	9 th
Trusses 6.2: Definition of a Truss 6.3: Simple Trusses	→ 9 th (2E) → To be taught as a special math topic [four operations] (M1N3) → 1 st (1A) + (M2N3) → 2^{nd} (1A), or (M7N1) → 7 th (2A)	[Newton's 3^{rd} Law: Action and Reaction] (SP1) $\rightarrow 9^{th}$ (3C)		
6.4: Analysis of Trusses by the Method of Joints	[coordinate system] (M4G3) \rightarrow 4 th (2B)			
6.5: Joints under Special Loading Conditions				
6.6: Space Trusses				
6.7: Analysis of Trusses by the Method of Sections 6.8: Trusses Made of Several Simple Trusses				
6.3: Trusses Made of Several Shiple Trusses Frames and Machines 6.9: Structures Containing Multiforce Members	[trigonometric functions] (MA2G2) $\rightarrow 10^{\text{th}}$ (2F) [coordinate system] (M4G3) $\rightarrow 4^{\text{th}}$ (2B) [sigma notation] (M6N1) $\rightarrow 6^{\text{th}}$ (1A) or (MA1A3)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) [Newton's 3 rd Law: Action and Reaction] (SP1) \rightarrow 9 th (3C)	9 th	-
6.10: Analysis of a Frame 6.11: Frames Which Cease to Be Rigid When Detached from Their Supports	→ 9 th (2E) → To be taught as a special math topic [four operations] (M1N3) → 1 st (2A) + (M2N3) → 2 nd (1A), or (M7N1) → 7 th (2A)			

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gi to S	ssible rade Start Topic
	Math	Physics	Sec	Ch
Chapter 6: Analysis of Structures (Continued				
6.12: Machines	[sigma notation] (M6N1) → 6 th (1A) or (MA1A3) → 9 th (2E) → To be taught as a special math topic [four operations] (M1N3) → 1 st (2A) + (M2N3) → 2 nd (1A), or (M7N1) → 7 th (2A) [trigonometric functions] (MA2G2) → 10 th (2F) → To be taught as a special math topic [coordinate system] (M4G3) → 4 th (2B)	[force] $(S4P3) \rightarrow 4^{th} (3A)$ or $(S8P3) \rightarrow 8^{th} (3C)$ [Newton's 3 rd Law: Action and Reaction] $(SP1) \rightarrow 9^{th} (3C)$	9 th	9 th
Chapter 7: Forces in Beams and Cables				
7.1: Introduction7.2: Internal Forces in Members	[sigma notation] (M6N1) \rightarrow 6 th (1A) or (MA1A3) \rightarrow 9 th (2E) \rightarrow To be taught as a special math topic [four operations] (M1N3) \rightarrow 1 st (2A) +	[force] (S4P3) $\rightarrow 4^{\text{th}}$ (3A) or (S8P3) $\rightarrow 8^{\text{th}}$ (3C)	PS	PS
Beams 7.3: Various Types of Loading and Support 7.4: Shear and Bending Moment in a Beam	$(M2N3) \rightarrow 2^{nd}$ (2A), or $(M7N1) \rightarrow 7^{th}$ (2A) [integration] $\rightarrow 12^{th}$ (To be taught)			
7.4: Shear and Bending-Moment Diagrams	-			
7.6. Relations among Load, Shear, and Bending Moment $\frac{dV}{dx} = -w$ $V_{D} - V_{C} = -\int_{x_{C}}^{x_{D}} w dx = -wx = = -(\text{Area under load curve between C an D})$ $\frac{dM}{dx} = V$ $M_{D} - M_{C} = \int_{x_{C}}^{x_{D}} V dx = -(\text{Area under shear curve between C an D})$	[sigma notation] (M6N1) → 6 th (1A) or (MA1A3) → 9 th (2E) → To be taught as a special math topic [four operations] (M1N3) → 1 st (1A) + (M2N3) → 2 nd (1A), or (M7N1) → 7 th (2A) [integration] → 12 th (to be taught) [differentiation] → 12 th (to be taught)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	PS	

Engineering Analytic Topics & Typical Formulas	[Pre-requisite Math Skills/Science Princ	th & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.) to		ible ide rt the pic
	Math	Physics	Sec	Ch
Chapter 7: Forces in Beams and Cables (Cor	ntinued)			
Cables7.7: Cables with Concentrated Loads7.8: Cables with Distributed Loads $T \cos \theta = T_o$ $T \sin \theta = W$ $T = \sqrt{T_o^2 + W^2}$ $\tan \theta = \frac{W}{T_o}$ 7.9: Parabolic Cable wx^2	[sigma notation] (M6N1) → 6 th (1A) or (MA1A3) → 9 th (2E) → To be taught as a special math topic [trigonometric functions] (MA2G2) → 10 th (2F) → To be taught as a special math topic [four operations] (M1N3) → 1 st (2A) + (M2N3) → 2 nd (2A), or (M7N1) → 7 th (2A) [square root] (M8N1) → 8 th (2A)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	8 th	PS
$y = \frac{wx^2}{2T_o}$ 7.10: Catenary $T = \sqrt{T_o^2 + w^2 s^2} c = \frac{T_o}{w} T_o = wc W = ws T = w\sqrt{c^2 + s^2}$ $dx = ds \cos\theta = \frac{T_o}{T} ds = \frac{wcds}{w\sqrt{c^2 + s^2}}$ $x = \int_o^s \frac{ds}{\sqrt{1 + \frac{s^2}{c^2}}} = c \left[\sinh^{-1}\frac{s}{c}\right]_o^s = c\sinh^{-1}\frac{s}{c}$	[sigma notation] (M6N1) → 6 th (1A) or (MA1A3) → 9 th (2E) → To be taught as a special math topic [trigonometric functions] (MA2G2) → 9 th (2F) [four operations] (M1N3) → 1 st (2A) + (M2N3) → 2 nd (2A), or (M7N1) → 7 th (2A) [square root] (M8N1) → 8 th (2A) [integration] → 12 th (to be taught)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	PS	-
$\int_{0}^{30} \sqrt{1 + \frac{s^2}{c^2}} \qquad \qquad c \qquad \qquad c$ $s = c \sinh \frac{x}{c} y = c \cosh \frac{x}{c} y^2 - s^2 = c^2 T_o = wc W = ws$ $T = wy h = y_A = c$	[differentiation] $\rightarrow 12^{\text{th}}$ (to be taught)			

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gr to Sta To	sible ade art the pic
Chanton & Eviction	Math	Physics	Sec	Ch
Chapter 8: Friction	[four operations] (M1N3) \rightarrow 1 st (2A) +	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	9 th	PS
8.1: Introduction 8.2: The Laws of Dry Friction. Coefficients of Friction	$(M2N3) \rightarrow 2^{nd} (2A), \text{ or } (M7N1) \rightarrow 7^{th} (2A)$	$[101Ce](34P3) \neq 4 (3A) 01(38P3) \neq 8 (3C)$	9	PS
$F_m = \mu_s N$ $F_k = \mu_k N$	[trigonometric functions] (MA2G2) \rightarrow 10 th (2F)			
8.3: Angles of Friction	\rightarrow To be taught as a special math topic			
$\tan \phi_s = \frac{F_m}{N} = \frac{\mu_s N}{N} \to \tan \phi_s = \mu_s$	[surface] (M6M4) $\rightarrow 6^{\text{th}}$ (2B)			
$\tan \phi_k = \frac{F_k}{N} = \frac{\mu_k N}{N} \to \tan \phi_k = \mu_k$				
8.4: Problems Involving Dry Friction				
8.5: Wedges				
8.6: Square-Threaded Screws				
$Q = P \frac{a}{r} L = nP$				
8.7: Journal Bearings. Axle Friction				
$M = Rr\sin\phi_k \approx Rr\mu_k r_f = r\sin\phi_k \approx r\mu_k$				
8.8: Thrust Bearings. Disk Friction	[four operations] (M1N3) $\rightarrow 1^{st}$ (2A) +	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	PS	
$\Delta M = r\Delta F = \frac{r\mu_k P\Delta A}{\pi \left(R_2^2 - R_1^2\right)}$	$(M2N3) \rightarrow 2^{nd} (2A), \text{ or } (M7N1) \rightarrow 7^{th} (2A)$ [integration] $\rightarrow 12^{th}$ (to be taught)			
$M = \frac{\mu_k P}{\pi (R_2^2 - R_1^2)} \int_0^{2\pi} \int_{R_1}^{R_2} r^2 dr d\theta = \frac{\mu_k P}{\pi (R_2^2 - R_1^2)} \int_0^{2\pi} \left[\frac{r^{2+1}}{2+1} \right]_{R_1}^{R_2} d\theta$				
$=\frac{\mu_k P}{\pi (R_2^2-R_1^2)} \int_0^{2\pi} \frac{1}{3} (R_2^3-R_1^3) d\theta$				
Ring area : $M = \frac{2}{3} \mu_k P \frac{R_2^3 - R_1^3}{R_2^2 - R_1^2}$ Full circle : $M = \frac{2}{3} \mu_k P R$				
8.9: Wheel Friction. Rolling Resistance Pr = Wb	[four operations] (M1N3) \rightarrow 1 st (2A) + (M2N3) \rightarrow 2 nd (2A), or (M7N1) \rightarrow 7 th (2A)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	8 th	

Engineering Subject: Statics				
Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		le) Possil Grad to Star Topi	
	Math	Physics	Sec	Ch
Chapter 8: Friction (Continued)				
8.10: Belt Friction $\ln \frac{T_2}{T_1} = \mu_s \beta \frac{T_2}{T_1} = e^{\mu_s \beta}$ (For other formulas, refer to pp. 451-452)	[sigma notation] (M6N1) → 6 th (1A) or (MA1A3) → 9 th (2E) → To be taught as a special math topic [four operations] (M1N3) → 1 st (2A) + (M2N3) → 2 nd (2A), or (M7N1) → 7 th (2A) [trigonometric functions] (MA2G2) → 10 th (2F) → To be taught as a special math topic [logarithmic functions] (MA2A4) → 10 th (2E) → To be taught as a special math topic [integration] → 12 th (to be taught) [differentiation] → 12 th (to be taught)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	PS	PS

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		to Sta To	ade
		Physics	Sec	Ch
Math Physics S Chapter 9: Distributed Forces: Moments of Inertia				
9.1: Introduction			PS	PS
		$[power] (SP3) \rightarrow 9^{\text{th}} (3C)$		
9.2: Second Moment, or Moment of Inertia, of an Area				
$R = \int ky dA = k \int y dA M = \int ky^2 dA = k \int y^2 dA$				
$R = \int \gamma y dA = \gamma \int y dA M_x = \int y^2 dA = \gamma \int y^2 dA$	[square root] (M8N1) $\rightarrow 8^{\text{th}}$ (2A)			
9.3: Determination of the Moment of Inertia of an Area by				
•				
$I_x = \int y^2 dA I_y = \int x^2 dA dA = b dy dI_x = y^2 b dy$	[geometric shapes: ellipse] (MA2G4) $\rightarrow 10^{\text{th}}$			
$I_{x} = \int_{O}^{h} by^{2} dy = \frac{1}{3} BH^{3} dI_{x} = \frac{1}{3} y^{3} dx dI_{y} = x^{2} dA = x^{2} y dx$				
9.4: Polar Moment of Inertia				
$J_o = \int r^2 dA = \int (x^2 + y^2) dA = \int y^2 dA + \int x^2 dA$				
$J_o == I_x + I_y$	[three-dimensional bodies: circular cone,			
$I_x = k_x^2 A \rightarrow k_x = \sqrt{\frac{I_x}{A}} I_y = k_y^2 A \rightarrow k_y = \sqrt{\frac{I_y}{A}}$	[trigonometric functions] (MA2G2) $\rightarrow 10^{\text{th}}$ (2F) \rightarrow To be taught as a special math topic			
$J_o = k_o^2 A \Rightarrow k_o = \sqrt{\frac{J_o}{A}}$	\rightarrow To be taught as a special math topic			
9.6: Parallel-Axis Theorem	$[gardient: "del"] \rightarrow 12^{\text{th}} (to be taught)$			
$I = \int y^2 dA$	[linear algebra] (MA2A6) (MA2A7) (MA2A8) (MA2A9) \rightarrow 10 th (2G)			
$I = \int y^{2} dA = \int (y' + d)^{2} dA = \int y'^{2} dA + 2d \int y' dA + d^{2} \int dA$	(MA2A9) 7 10 (20)			
$I = \overline{I} + Ad^2$ $k^2 = \overline{k}^2 + d^2$ $J_o = \overline{J}_o + Ad^2$ or $k_o^2 = \overline{k}_o^2 + d^2$				

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Complet [Pre-requisite Math Skills/Science Princ	ion Grade (Georgia Performance Standard Code) :iples] (GPS Code) → Grade (Table No.)	Gr to S	sible ade Start Topic
	Math	Physics	Sec	Ch
Chapter 9: Distributed Forces: Moments of 	Inertia (Continued)			
9.7: Moments of Inertia of Composite Areas (Formulas for moments of inertia of common geometric shapes can be found on page 485) 9.8: Product of Inertia $I_{xy} = \int xy \ dA = \int (x'+\bar{x})(y'+\bar{y})dA$ $= \int x' y' dA + \bar{y} \int x' dA + \bar{x} \int y' dA + \bar{x} \bar{y} \int dA$ $I_{xy} = \bar{I}_{x'y'} + \bar{x} \bar{y}A$ 9.9: Principal Axes and Principal Moments of Inertia (Formulas for principle axis and principle moments of inertia can be found on pages 498-500) 9.10: Mohr's Circle for Moments and Products of Inertia	[integration] → 12 th (to be taught) [differentiation] → 12 th (to be taught) [four operations] (M1N3) → 1 st (2A) + (M2N3) → 2 nd (2A), or (M7N1) → 7 th (2A) [area] (M3M3) (M3M4) → 3 rd (2B) [square root] (M8N1) → 8 th (2A) [coordinate system] (M4G3) → 4 th (2B) [areas of geometric shapes: circle, triangle] (M5M1) → 5 th (2B) [geometric shapes: ellipse] (MA2G4) → 10 th (2F) → To be taught as a special math topic [three-dimensional bodies: thin rectangular plate,	[force] (S4P3) → 4 th (3A) or (S8P3) → 8 th (3C) [power] (SP3) → 9 th (3C)	PS	PS
Moments of Inertia of Masses 9.11: Moment of Inertia of a Mass $I = \int r^2 dm I = k^2 m or k = \sqrt{\frac{I}{m}}$ $I_x = \int (y^2 + z^2) dm I_y = \int (z^2 + x^2) dm$ $I_z = \int (x^2 + y^2) dm$ Note: This Chapter involves substantial amount of calculus- based computations; and is most likely beyond high school students' mathematics skill level.	rectangular prism] (M5M4) → 5 th (2B) [three-dimensional bodies: slender rod, circular cylinder, cone] (M6M3) → 6 th (2B) [three-dimensional bodies: circular cone, sphere] (M2G2) → 2 nd (2B) [trigonometric functions] (MA2G2) → 10 th (2F) → To be taught as a special math topic [cross product] → To be taught as a special math topic [partial differentiation] → 12 th (to be taught) [gradient: "del"] → 12 th (to be taught) [linear algebra] (MA2A6) (MA2A7) (MA2A8) (MA2A9) → 10 th (2G) → To be taught as a special math topic			

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gr to S the T	sible ade Start <u>Fopic</u>
	Math	Physics	Sec	Ch
Chapter 9: Distributed Forces: Moments of In	nertia (Continued)			
9.12: Parallel-Axis Theorem $x = x' + \overline{x} y = y' + \overline{y} z = z' + \overline{z}$ $I_x = \int (y^2 + z^2) dm$ $I_x = \overline{I}_{x'} + m(\overline{y}^2 + \overline{z}^2) = \int [(y' + \overline{y})^2 + (z' + \overline{z})^2] dm$ $= \int (y'^2 + z'^2) dm + 2\overline{y} \int y' dm + 2\overline{z} \int z' dm + (\overline{y}^2 + \overline{z}^2) \int dm$ $I_y = \overline{I}_{y'} + m(\overline{z}^2 + \overline{x}^2) I_z = \overline{I}_{z'} + m(\overline{x}^2 + \overline{y}^2)$ $I = \overline{I} + md^2 k^2 = \overline{k}^2 + d^2$ 9.13: Moments of Inertia of Thin Plates $I_{AA',mass} = \int r^2 dm \\ dm = \rho t \ dA$ $I_{AA',mass} = \rho t I_{AA',area} I_{BB',mass} = \rho t I_{BB',area}$ $I_{CC',mass} = \rho t I_{CC'} = I_{AA'} + I_{BB'}$ Rectangular Plate $I_{AA',mass} = \rho t I_{AA',area} = \rho t \left(\frac{1}{12}a^3b\right) I_{BB',mass} = \rho t I_{BB',area} = \rho t \left(\frac{1}{12}ab^3\right)$ $I_{AA'} = \frac{1}{12}ma^2 I_{BB'} = \frac{1}{12}mb^2 I_{CC'} = I_{AA'} + I_{BB'} = \frac{1}{12}m(a^2 + b^2)$ Circular Plate $I_{AA',mass} = \rho t I_{AA',area} = \rho t \left(\frac{1}{4}\pi r^4\right) I_{AA'} = I_{BB'} = \frac{1}{4}mr^2$	[integration] → 12 th (to be taught) [differentiation] → 12 th (to be taught) [four operations] (M1N3) → 1 st (2A) + (M2N3) → 2 nd (2A), or (M7N1) → 7 th (2A) [area] (M3M3) (M3M4) → 3 rd (2B) [square root] (M8N1) → 8 th (2A) [coordinate system] (M4G3) → 4 th (2B) [areas of geometric shapes: circle, triangle] (M5M1) → 5 th (2B) [geometric shapes: ellipse] (MA2G4) → 10 th (2F) → To be taught as a special math topic [three-dimensional bodies: thin rectangular plate, rectangular prism] (M5M4) → 5 th (2B) [three-dimensional bodies: circular cone, sphere] (M2G2) → 2 nd (2B) [trigonometric functions] (MA2G2) → 10 th (2F) → To be taught as a special math topic [cross product] → To be taught as a special math topic [partial differentiation] → 12 th (to be taught) [gradient: "del"] → 12 th (to be taught) [linear algebra] (MA2A6) (MA2A7) (MA2A8) (MA2A9) → 10 th (2G) → To be taught as a special math topic	[force] (S4P3) → 4 th (3A) or (S8P3) → 8 th (3C) [power] (SP3) → 9 th (3C)	PS	PS

Engineering Subject: Statics			D	
Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Complet	ion Grade (Georgia Performance Standard Code)		sible ade
	[Pre-requisite Math Skills/Science Princ	tiples] (GPS Code) → Grade (Table No.)	_	tart
				Горіс
	Math	Physics	Sec	Ch
Chapter 9: Distributed Forces: Moments of I	nertia (Continued)			
9.14: Determination of the Moment of Inertia of a Three-	[integration] $\rightarrow 12^{\text{th}}$ (to be taught)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	PS	PS
Dimensional Body by Integration	[differentiation] $\rightarrow 12^{\text{th}}$ (to be taught)	[power] (SP3) \rightarrow 9 th (3C)		
(Formulas for mass moments of inertia of common geometric	[four operations] (M1N3) $\rightarrow 1^{\text{st}}$ (2A) +			
shapes can be found on page 517).	$(M2N3) \rightarrow 2^{nd} (2A), or (M7N1) \rightarrow 7^{th} (2A)$			
9.15: Moments of Inertia of Composite Bodies	[area] (M3M3) (M3M4) \rightarrow 3 rd (2B)			
	[square root] (M8N1) $\rightarrow 8^{\text{th}}$ (2A)			
9.16: Moment of Inertia of a Body with Respect to an	[coordinate system] (M4G3) \rightarrow 4 th (2B)			
Arbitrary Axis through O. Mass Products of Inertia	[areas of geometric shapes: circle, triangle]			
$I_{OL} = \int p^2 dm = \int \left \vec{\lambda} \times \vec{r} \right ^2 dm$	$(M5M1) \rightarrow 5^{th} (2B)$			
	[geometric shapes: ellipse] (MA2G4) $\rightarrow 10^{\text{th}}$ (2F)			
$= \int \left[(\lambda_x y - \lambda_y x)^2 + (\lambda_y z - \lambda_z y)^2 + (\lambda_z x - \lambda_x z)^2 \right]$	\rightarrow To be taught as a special math topic			
	[three-dimensional bodies: thin rectangular plate,			
$= \lambda_{x}^{2} \int (y^{2} + z^{2}) dm + \lambda_{y}^{2} \int (z^{2} + x^{2}) dm + \lambda_{z}^{2} \int (x^{2} + y^{2}) dm -$	rectangular prism] (M5M4) \rightarrow 5 th (2B)			
	[three-dimensional bodies: slender rod, circular			
$2\lambda_x\lambda_y\int xy\ dm-2\lambda_y\lambda_z\int yz\ dm-2\lambda_z\lambda_x\int zx\ dm$	cylinder, cone] (M6M3) $\rightarrow 6^{\text{th}}$ (2B)			
	[three-dimensional bodies: circular cone, sphere]			
$I_{xy} = \int xy \ dm I_{yz} = \int yz \ dm I_{zx} = \int zx \ dm$	$(M2G2) \rightarrow 2^{nd} (1B)$			
$I_{OL} = I_x \lambda_x^2 + I_y \lambda_y^2 + I_z \lambda_z^2 - 2I_{xy} \lambda_x \lambda_y - 2I_{yz} \lambda_y \lambda_{yz} - 2I_{zx} \lambda_z \lambda_x$	[trigonometric functions] (MA2G2) → 9 th (2F) [cross product]			
$I_{xy} = \overline{I}_{x'y'} + m\overline{xy} I_{yz} = \overline{I}_{y'z'} + m\overline{y}\overline{z} I_{zx} = \overline{I}_{z'x'} + m\overline{z}\overline{x}$	→ To be taught as a special math topic [partial differentiation] → 12^{th} (to be taught)			
9.17: Ellipsoid of Inertia. Principal Axes of Inertia	[gradient: "del"] \rightarrow 12 th (to be taught)			
$(OQ)\lambda_x = x (OQ)\lambda_y = y (OQ)\lambda_z = z$	[linear algebra] (MA2A6) (MA2A7) (MA2A8)			
$I_{x}x^{2} + I_{y}y^{2} + I_{z}z^{2} - 2I_{xy}xy - 2I_{yz}yz - 2I_{zx}zx = 1$	$(MA2A9) \rightarrow 10^{th} (2G)$			
$I_{x'}x'^2 + I_{y'}y'^2 + I_{z'}z'^2 = 1$	\rightarrow To be taught as a special math topic			
$I_{OL} = I_x \lambda_{x'}^2 + I_y \lambda_{y'}^2 + I_z \lambda_z^2,$				

Engineering Analytic Topics & Typical Formulas	[Pre-requisite Math Skills/Science Princ	ion Grade (Georgia Performance Standard Code) ciples] (GPS Code) → Grade (Table No.)	Gr to S the 7	ssible rade Start Topic
	Math	Physics	Sec	Ch
Chapter 9: Distributed Forces: Moments of			1	
9.18: Determination of the Principal Axes and Principal	[integration] $\rightarrow 12^{\text{th}}$ (to be taught)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)	PS	PS
Moments of Inertia of a Body of Arbitrary Shape	$[differentiation] \rightarrow 12^{th} (to be taught)$	$[power] (SP3) \rightarrow 9^{th} (3C)$		
$\nabla f = (2K)\vec{r}$	[four operations] (M1N3) \rightarrow 1 st (2A) +			
$K = \text{constant}$ $\Rightarrow \nabla f = \frac{\partial f}{\partial i}\hat{i} + \frac{\partial f}{\partial j}\hat{i} + \frac{\partial f}{\partial k}\hat{k}$	$(M2N3) \rightarrow 2^{nd}$ (2A), or $(M7N1) \rightarrow 7^{th}$ (2A)			
$ \nabla f = (2K)\vec{r} K = \text{constant} \vec{r} = x\hat{i} + y\hat{j} + z\hat{k} $ $\rightarrow \nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k} $	[area] (M3M3) (M3M4) \rightarrow 3 rd (2B)			
r = xi + yj + zk	[square root] (M8N1) $\rightarrow 8^{\text{th}}$ (1A)			
$f(x, y, z) = I_x x^2 + I_y y^2 + I_z z^2 - 2I_{xy} xy - 2I_{yz} yz - 2I_{zx} zx - 1$	[coordinate system] (M4G3) \rightarrow 4 th (2B)			
	[areas of geometric shapes: circle, triangle] (M5M1) \rightarrow 5 th (2B)			
	[geometric shapes: ellipse] (MA2G4) \rightarrow 10 th (2F)			
$\begin{vmatrix} I_x - K & -I_{xy} & -I_{zx} \\ -I_{xy} & I_y - K & -I_{yz} \\ -I_{zx} & -I_{yz} & I_z - K \end{vmatrix} = 0$	\rightarrow To be taught as a special math topic			
$\begin{vmatrix} -I_{xy} & I_y - K & -I_{yz} \end{vmatrix} = 0$	[three-dimensional bodies: thin rectangular plate,			
$-I_{zx}$ $-I_{yz}$ $I_z - K$	rectangular prism] (M5M4) \rightarrow 5 th (2B)			
(More calculus- and linear algebra- based formulas can be	[three-dimensional bodies: slender rod, circular			
found n pages 534-535)	cylinder, cone] (M6M3) \rightarrow 6 th (2B)			
	[three-dimensional bodies: circular cone, sphere]			
	$(M2G2) \rightarrow 2^{nd} (2B)$			
	[trigonometric functions] (MA2G2) $\rightarrow 10^{\text{th}}$ (2F)			
	\rightarrow To be taught as a special math topic			
	[cross product]			
	\rightarrow To be taught as a special math topic			
	[partial differentiation] $\rightarrow 12^{\text{th}}$ (to be taught)			
	[gradient: "del"] $\rightarrow 12^{\text{th}}$ to be taught)			
	[linear algebra] (MA2A6) (MA2A7) (MA2A8)			
	$(MA2A9) \rightarrow 10^{th} (2G)$			
	\rightarrow To be taught as a special math topic			

		Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		ossible Grade o Start e Topic	
bonton 10. Mothod of Virtual Work	Math	Physics	Sec	Ch	
Chapter 10: Method of Virtual Work					
10.1: Introduction	[integration] → 12^{th} (to be taught) [differentiation] → 12^{th} (to be taught)	[force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) [work] (S8P3) \rightarrow 8 th (3C)	PS	PS	
10.2: Work of a Force	[trigonometric functions] (MA2G2) $\rightarrow 10^{\text{th}}$ (2F)	[potential energy] (SP3) \rightarrow 9 th (3C)			
$dU = \vec{F} \bullet d\vec{x} dU = F ds \cos \alpha dU = M d\theta$	\rightarrow To be taught as a special math topic				
10.3: Principle of Virtual Work					
$\delta U = \vec{F}_1 \bullet \delta \vec{r} + \vec{F}_2 \bullet \delta \vec{r} + \dots + \vec{F}_n \bullet \delta \vec{r}$	[coordinate system] (M4G3) \rightarrow 4 th (2B)				
$= \left(\vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n\right) \bullet \delta \vec{r} \rightarrow \delta U = \vec{R} \bullet \delta \vec{r}$	[partial differentiation] $\rightarrow 12^{\text{th}}$ (to be taught)				
10.4: Applications of the Principle of Virtual Work $x_{R} = 2\ell \sin \theta$ $y_{C} = \ell \cos \theta$					
$\delta x_{B} = 2\ell \cos \theta \delta \theta \delta y_{C} = -\ell \sin \theta \delta \theta$					
$\delta U = \delta U_Q + \delta U_P = -Q \delta x_B - P \delta y_C$					
$= -2Q\ell\cos\theta\delta\theta + P\ell\sin\theta\delta\theta$					
$\delta U = 0 \rightarrow$					
$2Q\ell\cos\theta\delta\theta = P\ell\sin\theta\delta\theta \rightarrow Q = \frac{1}{2}P\tan\theta$					
$B_x = -\frac{1}{2}P\tan\theta$					
10.5: Real Machines. Mechanical Efficiency					
$\delta U = -Q\delta x_{B} - P\delta y_{C} - F\delta x_{B}$					
$= -2Q\ell\cos\theta \delta\theta + P\ell\sin\theta \delta\theta - \mu P\ell\cos\theta \delta\theta$					
$\delta U = 0 \rightarrow 2Q\ell\cos\theta \ \delta\theta = P\ell\sin\theta \ \delta\theta - \mu P\ell\cos\theta \ \delta\theta \rightarrow$					
$\eta = \frac{\text{output work}}{\text{input work}} = \frac{2Q\ell\cos\theta\ \delta\theta}{P\ell\sin\theta\ \delta\theta}$					
$\eta = \frac{2\left(\frac{1}{2}P(\tan\theta - \mu)\right)\ell\cos\theta\ \delta\theta}{P\ell\sin\theta\ \delta\theta} = \frac{P(\tan\theta - \mu)\ell\cos\theta\ \delta\theta}{P\ell\sin\theta\ \delta\theta} = 1 - \mu\cot\theta$					

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)		Gr to S	sible ade Start Topic
	Math	Physics	Sec	Ch
Chapter 10: Method of Virtual Work (Contin	nued)			
10.6: Work of a Force during a Finite Displacement $dU = \vec{F} \cdot d\vec{r} \rightarrow U_{1\rightarrow 2} = \int_{A_1}^{A_2} \vec{F} \cdot d\vec{r}$ $dU = F ds \cos \alpha \rightarrow U_{1\rightarrow 2} = \int_{S_1}^{S_2} (F \cos \alpha) ds$ $dU = M d\theta \rightarrow U_{1\rightarrow 2} = \int_{\theta_1}^{\theta_2} M d\theta U_{1\rightarrow 2} = M (\theta_2 - \theta_1)$ Work of a weight $dU = -W dy \rightarrow U_{1\rightarrow 2} = -\int_{y_1}^{y_2} W dy U_{1\rightarrow 2} = -W (y_2 - y_1) = -W$ Work of the force exerted by a spring $F = kx \rightarrow dU = -F dx = -kx dx$ $U_{1\rightarrow 2} = -\int_{x_1}^{x_2} kx dx = \frac{1}{2} kx_1^2 - \frac{1}{2} kx_2^2 U_{1\rightarrow 2} = -\frac{1}{2} (F_1 + F_2) \Delta x$ 10.7: Potential Energy $U_{1\rightarrow 2} = (V_g)_1 - (V_g)_2 \leftarrow V_g = Wy$ $U_{1\rightarrow 2} = (V_e)_1 - (V_e)_2 \leftarrow V_e = \frac{1}{2} kx^2$	<pre>[integration] → 12th (to be taught) [differentiation] → 12th (to be taught) [trigonometric functions] (MA2G2) → 10th (2F) → To be taught as a special math topic [dot product] → To be taught as a special math topic [coordinate system] (M4G3) → 4th (2B) [partial differentiation] → 12th (to be taught)</pre>	[force] (S4P3) → 4 th (3A) or (S8P3) → 8 th (3C) [work] (S8P3) → 8 th (3C) [potential energy] (SP3) → 9 th (3C)	PS	PS

Statics Topics List (Continued).

Engineering Analytic Topics & Typical Formulas	Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code) [Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)						
	Math	Physics	Sec	Ch			
Chapter 10: Method of Virtual Work (Contin		l de la de	1				
10.8: Potential Energy and Equilibrium $\frac{dV}{d\theta} = 0 V_e = \frac{1}{2} k x_B^2 V_g = W y_c x_B = 2\ell \sin \theta y_c = \ell \cos \theta$ $V_e = \frac{1}{2} k (2\ell \sin \theta)^2 V_g = W(\ell \cos \theta)$ $V = V_e + V_g = 2k\ell^2 \sin^2 \theta + W\ell \cos \theta$ $\frac{dV}{d\theta} = 4k\ell^2 \sin \theta \cos \theta - W\ell \sin \theta = 0$ $\frac{dV}{d\theta} = \ell \sin \theta (4k\ell \cos \theta - W) = 0$ 10.9: Stability of Equilibrium $\frac{dV}{d\theta} = 0 \frac{d^2V}{d\theta^2} > 0 : \text{ stable equilibrium}$ $\frac{dV}{d\theta} = 0 \frac{d^2V}{d\theta^2} < 0 : \text{ unstable equilibrium}$ $\frac{\partial V}{\partial \theta_1} = \frac{\partial V}{\partial \theta_2} = 0 \left(\frac{\partial^2 V}{\partial \theta_1 \partial \theta_2}\right)^2 - \frac{\partial^2 V}{\partial \theta_1^2} \frac{\partial^2 V}{\partial \theta_2^2} < 0$ $\frac{\partial^2 V}{\partial \theta_1^2} > 0 \text{or} \frac{\partial^2 V}{\partial \theta_2^2} > 0$	<pre>[integration] → 12th (to be taught) [differentiation] → 12th (to be taught) [trigonometric functions] (MA2G2) → 10th (2F) → To be taught as a special math topic [dot product] → To be taught as a special math topic [coordinate system] (M4G3) → 4th (2B) [partial differentiation] → 12th (to be taught)</pre>	[force] (S4P3) → 4 th (2A) or (S8P3) → 8 th (3C) [work] (S8P3) → 8 th (3C) [potential energy] (SP3) → 9 th (3C)	PS	PS			
	TE END			L			

Part Two 1st Round of Delphi – Five-Point Likert Scale Survey Forms

Proposed Procedures for Survey Response

To facilitate survey response to the initial selection of statics topics that could be possibly taught to students at 9th or above Grade, as listed in the *Statics Survey Form A* and *Survey Form B*, the following procedures are hereby proposed:

- 1. Rate the importance of each Section as a topic in a potentially viable 9th or above Grade statics subject, and write a number representing its "importance" value (*Figure 4A*), using the five-point Likert Scale (*Figure 4B*);
- 2. Check the formulas listed under the **Engineering Analytic Topics & Typical Formulas** column, and use symbols shown in *Figure 4B* to indicate your expert opinion and advice about each formula;
- 3. Add your general comments and advice in the empty space.

Project Title: High School Appropriate Engineering Content Knowledge (Appendix 3A) WFED 7650-Applied Project in Workforce Education Professors: Dr. Robert Wicklein & John Mativo Student: Edward Locke, University of Georgia

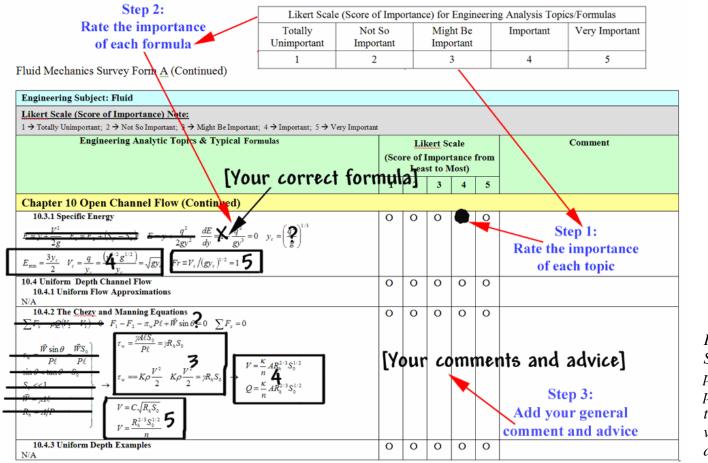



Figure 4A. Step-by-step procedures proposed for the review and validation of data. Project Title: High School Appropriate Engineering Content Knowledge (Appendix 3A) WFED 7650-Applied Project in Workforce Education Professors: Dr. Robert Wicklein & John Mativo Student: Edward Locke, University of Georgia

Strike-through: "Rarely taught or used"

Figure 4B. Likert Scale (top) and symbols to be used for the expression of expert opinion and offer of advice.

Explaination of Likert Scale Grayout a Statics Form A 1 st Round of Delphi - Likert Scale Questionnaire on the Importance of V		tatics	Topi	rs Sel	ected	Likert Scale fill-in area	Comment area
Curriculum (For the Pre-calculus Portion)			1 option				/
Engineering Subject: Statics	1						
Likert Scale (Score of Importance) Note: 1 → Totally Unimportant; 2 → Not So Important; 3 → Might Be Important; 4 → Important; 5 → Very I	mportant						
Engineering Analytic Topics & Typical Formulas	(Sco 1	ore of]	kert So Import st to M 3	tance	from	Comment	
Chapter 1: Introduction		1		/			
1.1: What Is Mechanics?	0	0	0	6	0		
1.2: Fundamental Concepts and Principles $\vec{a} = \frac{\vec{F}}{m} \Rightarrow \vec{F} = m\vec{a} \vec{F}_{AB} = -\vec{F}_{BA} \vec{F} = G \frac{m_1 m_2}{r^2}$	0	0	9	0	0	/	
1.3: Systems of Units	0	0	0	0	0	C:	
1.4: Conversion from One System of Units to Another	0	0	0	0	0		
1.5: Method of Problem Solution	0	0	0	0	0		
1.6: Numerical Accuracy	0	0	0	0	0		

Figure 4C. Gray-out rows.

Notice that in *Statics Form A* and *Statics Form B*, some rows under the **Likert Scale** (Score of Importance from Least to **Most**) columns are gray-out (*Figure 4C*). These gray-out rows correspond to some topics of statics that are so essential that they need to be included into a potentially viable K-12 statics curriculum in order to maintain the integrity of its pre-requisite sequence. The participants could still choose to rate their Likert Scale order of importance to help better understand their different roles in a potentially viable K-12 statics course.

Notes about the Statics Analytic Principles and Formulas

The leftmost column in the Statics Survey Form A and Statics Survey Form B contain

- 1. The titles of each section under a particular chapter in the selected textbook, which in general represent particular sets of statics related engineering analytic and predictive principles, in a qualitative and explanatory way;
- 2. Computational formulas, which symbolically represent the above engineering analytic and predictive principles, in a quantitative and mathematical way.

As shown in *Figure 4B*, the formulas extracted from the selected textbook might by categorized into five groups, corresponding to the five different symbols shown in *Figure 4B*, which could be used by the above-mentioned five Groups of Participants:

- Formulas that engineering professors actually teach in classroom lectures and that practicing engineers use in engineering design projects: These are the important ones to be included in a potentially viable K-12 engineering curriculum that shall be based on cohesive and systemic mastery of engineering analytic and predictive principles and skills. For any of these formulas, a box could be used together with a number representing its order of importance according to the five-point Likert Scale (1 = Totally Unimportant, 2 = Not So Important, 3 = Might Be Important, 4 = Important, or 5 = Very Important).
- 2. Formulas that are rarely used in either classroom lectures or in field practice, but are used by the original discoverer of a particular set of analytic principles to derive other formulas that are actually used in classroom lecture or in field practice: Some of these "intermediate" formulas might not be used often, in other words, they are "rarely taught or used." For any of these formulas, a strikethrough could be used. If a big enough percentage of participants (maybe 85% or above) place a strikethrough on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. Interestingly enough, in some cases, rarely used calculus-based "intermediate" formulas are used to derive a final one that is based on pre-calculus mathematics skills and is actually used in most homework assignments and design projects; in this case, if the

"intermediate" formulas are removed from consideration, then the entire topic of statics could be re-classified as appropriate for 9th Grade. For example, in fluid mechanics, the main formula $\vec{F} = m\vec{a}$ and

 $p + \frac{1}{2}\rho V^2 + \gamma z$ = constant along a streamline (Bernoulli Equation) do not need calculus, and thus, could be taught to 9th

Grade students. This type of formulas will make the list shorter and shorter as the proposed Delphi study moves to the next round of survey. Some of these formulas might not be in the selected textbook; I derived them for fun, sometimes with the help of my former engineering professor, Dr. Dr. Jayesh Bhakta, at Los Angeles City College.

- 3. Formulas that are particular to certain conditions and in real classroom lectures or field practice are, for all practical purposes, close to be "never used:" For any of these formulas, a double-strikethrough could be used. If a big enough percentage of participants (maybe 75% or above) place a double-strikethrough on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. This type of formulas will also make the list shorter and shorter as the proposed Delphi study moves to the next round of survey.
- 4. Formulas that even experienced university engineering professors or practicing engineers might "not understand:" This is amazing but totally correct and yes, absolutely normal! There are formulas that even experienced professors might say "I do not understand this" or "I need to read the context in the book to figure this out." For any of these formulas, the participants should generally not seek to understand them (doing so does not serve the purpose of studying the relative importance of each computational formula); but instead, a question mark (?) could be used. If a big enough percentage of participants (maybe 65% or above) place a question mark (?) on a particular formula at the end of each round of the proposed four-round Delphi study, then the formula will be removed from the survey form for the next round. If the trend continues through all four rounds of the proposed Delphi survey, then that formula might be removed from the final list of high school appropriate statics topics. Indeed, it makes little sense to include this type of formulas to a potentially viable K-12 engineering curriculum. This type of formulas will also make the list shorter and shorter as the proposed Delphi study moves to the next round of survey. Some of these formulas might not be in the selected textbook; I derived them for fun, sometimes with the help of my former engineering professor, Dr. Jayesh Bhakta, at Los Angeles City College.

6. <u>Formulas that are wrong for any reasons (my typing errors, or the authors' errors, etc.)</u>: For any of these formulas, a cross (X) could be used and the correct formulas should be given if possible. The correction would be included in the survey forms for the subsequent rounds of the four-round five-point Likert Scale Delphi study.

For convenience of statistic analysis of expert opinions and advice, it is requested that all participants print each letter of their comment legibly and separately, using fonts commonly used in engineering notebooks.

Project Title: High School Appropriate Engineering Content Knowledge (Appendix 3A) WFED 7650-Applied Project in Workforce Education Professors: Dr. Robert Wicklein & John Mativo Student: Edward Locke, University of Georgia

Statics Survey Form A

1st Round of Delphi - Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for High School Engineering Curriculum (For the Pre-calculus Portion)

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
1 \rightarrow Totally Unimportant; 2 \rightarrow Not So Important; 3 \rightarrow Might Be Important; 4 \rightarrow Important; 5 \rightarrow V	Very Important					
Engineering Analytic Topics & Typical Formulas		Lil	kert So	cale		Comment
	(Sco	ore of]	Impor	tance	from	
		Lea	st to N	lost)		
	1	2	3	4	5	
Chapter 1: Introduction				-		
1.1: What Is Mechanics?	0	0	0	0	0	
1.2: Fundamental Concepts and Principles	0	0	0	0	0	
$\vec{a} = \frac{\vec{F}}{m} \Rightarrow \vec{F} = m\vec{a} \vec{F}_{AB} = -\vec{F}_{BA} \vec{F} = G\frac{m_1m_2}{r^2}$						
1.3: Systems of Units	0	0	0	0	0	
1.4: Conversion from One System of Units to Another	0	0	0	0	0	
1.5: Method of Problem Solution	0	0	0	0	0	
1.6: Numerical Accuracy	0	0	0	0	0	
Chapter 2: Statics of Particles						
2.1: Introduction	0	0	0	0	0	
<u>Forces in a Plane</u> 2.2: Force on a Particle. Resultant of Two Forces	0	0	0	0	0	
2.3: Vectors	0	0	0	0	0	
2.4: Addition of Vectors	0	0	0	0	0	
2.5: Resultant of Several Concurrent Forces	0	0	0	0	0	
2.6: Resolution of a Force into Components	0	0	0	0	0	
2.7: Rectangular Components of a Force. Unit Vectors	0	0	0	0	0	

Engineering Subject: Statics									
Likert Scale (Score of Importance) Note:									
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very	Important								
Engineering Analytic Topics & Typical Formulas	Engineering Analytic Topics & Typical Formulas Likert Scale								
	(Sco		lmpor st to N		from				
	1	2	3	4	5				
Chapter 2: Statics of Particles (Continued)									
2.8: Addition of Forces by Summing x and y Components	0	0	0	0	0				
$\vec{F} = F_x \hat{i} + F_y \hat{j}$ $F_x = F \cos \theta$ $F_y = F \sin \theta$ $\tan \theta = \frac{F_y}{F_x}$ $F = \sqrt{F_x^2 + F_y^2}$									
2.9: Equilibrium of a Particle	0	0	0	0	0				
$R = \sum F = F_1 + F_2 + \dots = 0 \implies R_x = \sum F_x = 0 R_y = \sum F_y = 0 R_z = \sum F_z = 0$ 2.10: Newton's First Law of Motion		_	_	_	_				
2.10: Newton's First Law of Motion	0	0	0	0	0				
2.11: Problems Involving the Equilibrium of a Particle. Free-Body Diagrams	0	0	0	0	0				
Forces in Space	0	0	0	0	0				
2.12: Rectangular Components of a Force in Space $F_{v} = F \cos \theta_{v}$ $F_{h} = F \sin \theta_{v}$ $F_{x} = F_{h} \cos \phi = F \sin \theta_{v} \cos \phi$ $F_{z} = F_{h} \sin \phi = F \sin \theta_{v} \sin \phi$									
$F^{2} = F_{y} + F_{h} = F_{y} + F_{x} + F_{z} \rightarrow F = \sqrt{F_{x} + F_{y} + F_{z}}$									
$F_x = F \cos \theta_x F_y = F \cos \theta_y F_z = F \cos \theta_z (0^\circ < \theta_{x,y,z} < 180^\circ)$									
$\vec{F} = F_x \hat{i} + F_y \hat{j} + F_k \hat{k} \vec{F} = F\left(\cos\theta_x \hat{i} + \cos\theta_y \hat{j} + \cos\theta_k \hat{k}\right)$									
$\cos \theta_x = \frac{F_x}{F} = \frac{d_x}{d} = \frac{R_x}{R} \cos \theta_y = \frac{F_y}{F} = \frac{d_y}{d} = \frac{R_y}{R} \cos \theta_z = \frac{F_z}{F} = \frac{d_z}{d} = \frac{R_z}{R}$									
$\theta_{x(y,z)} = \cos^{-1} \frac{F_{x(y,z)}}{F} = \cos^{-1} \frac{d_{x(y,z)}}{d} F = \sqrt{F_x^2 + F_y^2 + F_z^2}$									
$\hat{\lambda} = \cos \theta_x \hat{i} + \cos \theta_y \hat{j} + \cos \theta_z \hat{k} \hat{\lambda} = \frac{\vec{F}}{F} \hat{i} = \frac{d_x}{d} \hat{j} = \frac{d_y}{d} \hat{k} = \frac{d_z}{d}$									
$\cos^2 \theta_x + \cos^2 \theta_y + \cos^2 \theta_z = 1 \rightarrow \hat{\lambda}_x^2 + \hat{\lambda}_y^2 + \hat{\lambda}_z^2 = 1$									

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Imp	ortant					
Engineering Analytic Topics & Typical Formulas	(Sco	ore of l	kert So Impor st to N	tance	from	Comment
	1	2	3	4	5	
Chapter 2: Statics of Particles (Continued)						
2.13: Force Defined by Its Magnitude and Two Points on Its Line of Action	0	0	0	0	0	
$\overrightarrow{MN} = d_x \hat{i} + d_y \hat{j} + d_z \hat{k} \hat{\lambda} = \frac{MN}{MN} = \frac{1}{d} \left(d_x \hat{i} + d_y \hat{j} + d_z \hat{k} \right)$						
$d_{x(y,z)} = x(y,z)_2 - x(y,z)_1$ $d = \sqrt{d_x^2 + d_y^2 + d_z^2}$						
$\vec{F} = F\hat{\lambda} = \frac{F}{d} \left(d_x^2 \hat{i} + d_y^2 \hat{j} + d_z^2 \hat{k} \right) F_x = \frac{Fd_x}{d} F_y = \frac{Fd_y}{d} F_z = \frac{Fd_z}{d}$						
2.14: Addition of Concurrent Forces in Space	0	0	0	0	0	
$\vec{R} = \sum \vec{F} R = \sqrt{R_x^2 + R_y^2 + R_z^2} R_x \hat{i} + R_y \hat{j} + R_z \hat{k} = (\sum F_x)\hat{i} + (\sum F_y)\hat{j} + (\sum F_z)\hat{k}$						
2.15: Equilibrium of a Particle in Space	0	0	0	0	0	
$R = \sum F = F_1 + F_2 + \dots = 0 \rightarrow R_x = \sum F_x = 0 R_y = \sum F_y = 0 R_z = \sum F_z = 0$						
$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \times \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$						
$\begin{bmatrix} c \\ r \\$						
$ \begin{array}{l} R_x = \sum F_x = 0 aF_1 + bF_2 + cF_3 = 0 \\ R_y = \sum F_y = 0 dF_1 + eF_2 + fF_3 = 0 \\ R_z = \sum F_z = 0 gF_1 + hF_2 + iF_3 = 0 \end{array} \begin{bmatrix} a b c \\ d e f \\ g h i \end{bmatrix} \times \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} aF_1 + bF_2 + cF_3 \\ dF_1 + eF_2 + fF_3 \\ gF_1 + hF_2 + iF_3 \end{bmatrix} $						

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very	Important					
Engineering Analytic Topics & Typical Formulas		Lil	sert So	cale	Comment	
	(Sco		l <mark>mp</mark> or st to N	tance : Iost)	from	
	1	2	3	4	5	
Chapter 3: Rigid Bodies - Equivalent Systems of Forces						
3.1: Introduction	0	0	0	0	0	
3.2: External and Internal Forces	0	0	0	0	0	
3.3: Principle of Transmissibility. Equivalent Forces	0	0	0	0	0	
3.4: Vector Product of Two Vectors $\vec{V} = \vec{P} \times \vec{Q}$ $V = PQ\sin\theta$ $\vec{V} \perp \vec{P}$ $\vec{V} \perp \vec{Q}$ $\vec{V} \perp Plane_{\vec{p},\vec{Q}}$	0	0	0	0	0	
$\vec{P} \times (\vec{Q}_1 + \vec{Q}_2) = \vec{P} \times \vec{Q}_1 + \vec{P} \times Q_2 (\vec{P} \times \vec{Q}) \times \vec{S} \neq \vec{P} \times (\vec{Q} \times \vec{S}) \vec{V} = \vec{Q} \times \vec{P} = -(\vec{P} \times \vec{Q}) \vec{Q} \times \vec{P} \neq \vec{P} \times \vec{Q}$						
$\vec{P} \times \vec{Q} = -\vec{V} \vec{P} \times \left(\vec{Q}_1 + Q_2\right) = \vec{P} \times \vec{Q}_1 + \vec{P} \times Q_2 \vec{Q} \times \vec{P} \neq \vec{P} \times \vec{Q}$						
$\vec{V} = \vec{Q} \times \vec{P} = -\left(\vec{P} \times \vec{Q}\right) \vec{P} \times \vec{Q} = -\vec{V} \vec{V} = \vec{P} \times \vec{Q} \left(\vec{P} \times \vec{Q}\right) \times \vec{S} \neq \vec{P} \times \left(\vec{Q} \times \vec{S}\right)$						
3.5: Vector Products Expressed in Terms of Rectangular Components	0	0	0	0	0	
$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0 \hat{i} \times \hat{j} = \hat{k} \hat{j} \times \hat{k} = \hat{i} \hat{k} \times \hat{i} = \hat{j} \hat{i} \times \hat{k} = -\hat{j} \hat{j} \times \hat{i} = -\hat{k} \hat{k} \times \hat{j} = -\hat{i}$						
$\vec{P} = P_x \hat{i} + P_y \hat{j} + P_z \hat{k} \vec{Q} = Q_x \hat{i} + Q_y \hat{j} + Q_z \hat{k} \vec{V} = \vec{P} \times \vec{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{vmatrix} = V_x \hat{i} + V_y \hat{j} + V_z \hat{k}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$V_{x} = P_{y}Q_{z} - P_{z}Q_{y}$ $V_{y} = -(P_{x}Q_{z} - P_{z}Q_{x}) = P_{z}Q_{x} - P_{x}Q_{z}$ $V_{z} = P_{x}Q_{y} - P_{y}Q_{x}$						
3.6: Moment of a Force about a Point	0	0	0	0	0	
$\vec{M}_0 = \vec{r} \times \vec{F} M_0 = rF \sin \theta = Fd \vec{r} = \vec{v}_{position}^{O \to A} \theta = \angle_{\vec{r} \to \vec{F}} d \perp \vec{F}$						
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \end{vmatrix} \qquad \qquad M_x = yF_z - zF_y$						
$\vec{M}_{0} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{vmatrix} = M_{x}\hat{i} + M_{y}\hat{j} + M_{z}\hat{k} M_{y} = -(xF_{z} - zF_{x}) = zF_{x} - xF_{z}$ $M_{z} = xF_{y} - yF_{x}$						
$\begin{vmatrix} F_x & F_y & F_z \end{vmatrix} \qquad \qquad M_z = xF_y - yF_x$						

Engineering Subject: Statics									
Likert Scale (Score of Importance) Note:									
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Impo	rtant								
Engineering Analytic Topics & Typical Formulas	Likert Scale(Score of Importance from Least to Most)12345				from	Comment			
					5				
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)	Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)								
3.7: Varignon's Theorem $\vec{r} \times (\vec{F_1} + \vec{F_2} +) = \vec{r} \times \vec{F_1} + \vec{r} \times \vec{F_2} +$	0	0	0	0	0				
3.8: Rectangular Components of the Moment of a Force $\vec{M}_{B} = \vec{r}_{A/B} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_{A/B} & y_{A/B} & z_{A/B} \\ F_{x} & F_{y} & F_{z} \end{vmatrix} \begin{vmatrix} \vec{r}_{A/B} = x_{A/B} \hat{i} + y_{A/B} \hat{j} + z_{A/B} \hat{k} \\ x_{A/B} = x_{A} - x_{B} \\ y_{A/B} = y_{A} - y_{B} \\ z_{A/B} = z_{A} - z_{B} \end{vmatrix}$	0	0	0	0	0				
3.9: Scalar Product of Two Vectors $\vec{P} \cdot \vec{Q} = PQ \cos \theta = P_x Q_x + P_y Q_y + P_z Q_z \theta = \angle_{\vec{P} \to \vec{Q}}$ $\vec{P} \cdot \vec{Q} = \vec{Q} \cdot \vec{P} \vec{P} \cdot (\vec{Q}_1 + \vec{Q}_2) = \vec{P} \cdot \vec{Q}_1 + \vec{P} \cdot \vec{Q}_2 P_{OL} = \vec{P} \cdot \hat{\lambda} = P_x \cos \theta_x + P_y \cos \theta_y + P_z \cos \theta_z$ (More formulas on p. pp. 94-95)	0	0	0	0	0				
3.10: Mixed Triple Product of Three Vectors $\vec{S} \bullet (\vec{P} \times \vec{Q}) = \begin{vmatrix} S_x & S_y & S_z \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{vmatrix}$	0	0	0	0	0				

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Impo	rtant					
Engineering Analytic Topics & Typical Formulas		Lił	cert So	cale		Comment
	(Sco	ore of l Leas	Impor st to N		from	
	1	2	3	4	5	
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)						
3.11: Moment of a Force about a Given Axis	0	0	0	0	0	
$M_{OL} = \hat{\lambda} \bullet \vec{M}_{O} = \hat{\lambda} \bullet (\vec{r} \times \vec{F}) = \begin{vmatrix} \lambda_{x} & \lambda_{y} & \lambda_{z} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{vmatrix} $ (More formulas on p. pp. 98)						
3.12: Moment of a Couple	0	0	0	0	0	
$\vec{M} = \vec{r} \times \vec{F} M = rF\sin\theta = Fd$						
3.13: Equivalent Couples $F_1d_1 = F_2d_2$	0	0	0	0	0	
3.14: Addition of Couples $\vec{M} = \vec{r} \times \vec{R} = \vec{r} \times (\vec{F}_1 + \vec{F}_2) = \vec{r} \times \vec{F}_1 + \vec{r} \times \vec{F}_2 \vec{M} = \vec{M}_1 + \vec{M}_2$	0	0	0	0	0	
3.15: Couples Can Be Represented by Vectors	0	0	0	0	0	
3.16: Resolution of a Given Force Into a Force at <i>O</i> and a Couple $\vec{M}_{O'} = \vec{r}' \times \vec{F} = (\vec{r} + \vec{s}) \times \vec{F} = \vec{r} \times \vec{F} + \vec{s} \times \vec{F}$ $\vec{M}_{O'} = \vec{M}_O + \vec{s} \times \vec{F}$	0	0	0	0	0	
3.17: Reduction of a System of Forces to One Force and One Couple $\vec{R} = \sum \vec{F} \vec{M}_{O}^{R} = \sum \vec{M}_{O} = \sum (\vec{r} \times \vec{F}) \vec{M}_{O}^{R} = \vec{M}_{O} + \vec{s} \times \vec{R} \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ $\vec{F} = F_{x}\hat{i} + F_{y}\hat{j} + F_{z}\hat{k} \vec{R} = R_{x}\hat{i} + R_{y}\hat{j} + R_{z}\hat{k} \vec{M}_{O}^{R} = M_{x}^{R}\hat{i} + M_{y}^{R}\hat{j} + M_{z}^{R}\hat{k}$	0	0	0	0	0	

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
1 \rightarrow Totally Unimportant; 2 \rightarrow Not So Important; 3 \rightarrow Might Be Important; 4 \rightarrow Important; 5 \rightarrow Very Important; 5	rtant					
Engineering Analytic Topics & Typical Formulas			kert So			Comment
	(Sco	re of I Lea	impor st to N		from	
	1	2	3	4	5	
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)						
3.18: Equivalent Systems of Forces	0	0	0	0	0	
$\sum \vec{F} = \sum \vec{F}' \& \sum \vec{M}_0 = \sum \vec{M}'_0 \sum \vec{F} = \sum \vec{F}' and \sum \vec{M}_0 = \vec{M}_0'$						
$\sum_{x} F_x = \sum_{x} F'_x \qquad \sum_{x} F_y = \sum_{x} F'_y \qquad \sum_{x} F_z = \sum_{x} F'_z$						
$\sum M_{x} = \sum M'_{x} \sum M_{y} = \sum M'_{y} \sum M_{z} = \sum M'_{z}$						
3.19: Equipollent Systems of Vectors	0	0	0	0	0	
3.20: Further Reduction of a System of Forces	0	0	0	0	0	
3.21: Reduction of a System of Forces to a Wrench	0	0	0	0	0	
$p = \frac{M_1}{R} M_1 = \frac{\vec{R} \cdot \vec{M}_o^R}{R} p = \frac{M_1}{R} = \frac{\vec{R} \cdot \vec{M}_o^R}{R^2} \vec{M}_1 = p\vec{R} \rightarrow \frac{\vec{M}_1 + \vec{r} \times \vec{R} = \vec{M}_o^R}{p\vec{R} + \vec{r} \times \vec{R} = \vec{M}_o^R}$						
Chapter 4: Equilibrium of Rigid Bodies						
4.1: Introduction $\sum \vec{F} = 0 \sum F_x = 0 \sum F_y = 0 \sum F_z = 0 \sum \vec{M}_o = \sum \left(\vec{r} \times \vec{F}\right) = 0 \sum M_x = 0 \sum M_y = 0 \sum M_z = 0$	0	0	0	0	0	
4.2: Free-Body Diagram	0	0	0	0	0	
Equilibrium in Two Dimensions	0	0	0	0	0	
4.3: Reactions at Supports and Connections for a Two-Dimensional Structure 4.4: Equilibrium of a Rigid Body in Two Dimensions						
$F_z = 0$ $M_x = M_y = 0$ $M_z = M_o$ $\sum F_x = 0$ $\sum F_y = 0$ $\sum M_o = 0$	0	0	0	0	0	
$\sum M_A = 0 \sum M_B = 0 \sum M_C = 0$						

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Impo	rtant							
Engineering Analytic Topics & Typical Formulas	Engineering Analytic Topics & Typical Formulas Likert Scale							
	(Sco		lmpor st to N	tance f Iost)	from			
	1	2	3	4	5			
Chapter 4: Equilibrium of Rigid Bodies (Continued)		-	-					
4.5: Statically Indeterminate Reactions. Partial Constraints	0	0	0	0	0			
4.6: Equilibrium of a Two-Force Body	0	0	0	0	0			
4.7: Equilibrium of a Three-Force Body	0	0	0	0	0			
Equilibrium in Three Dimensions 4.8: Equilibrium of a Rigid Body in Three Dimensions $\sum F_x = 0 \qquad \sum M_x = 0$ $\sum \vec{F} = 0 \qquad \sum \vec{M}_o = \sum (\vec{r} \times \vec{F}) = 0 \qquad \sum F_y = 0 \qquad \sum M_y = 0$ $\sum F_z = 0 \qquad \sum M_z = 0$	0	0	0	0	0			
4.9: Reactions at Supports and Connections for a Three-Dimensional Structure	0	0	0	0	0			
Chapter 6: Analysis of Structures								
6.1: Introduction	0	0	0	0	0			
Trusses 6.2: Definition of a Truss	0	0	0	0	0			
6.3: Simple Trusses	0	0	0	0	0			
6.4: Analysis of Trusses by the Method of Joints	0	0	0	0	0			
6.5: Joints under Special Loading Conditions	0	0	0	0	0			
6.6: Space Trusses	0	0	0	0	0			
6.7: Analysis of Trusses by the Method of Sections	0	0	0	0	0			
6.8: Trusses Made of Several Simple Trusses	0	0	0	0	0			

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very	Important					
Engineering Analytic Topics & Typical Formulas		Lil	kert So	cale		Comment
	(Sco		lmpor st to N	tance f Iost)	from	
	1	2	3	4	5	
Chapter 6: Analysis of Structures		•	•			
<u>Frames and Machines</u> 6.9: Structures Containing Multiforce Members	0	0	0	0	0	
6.10: Analysis of a Frame	0	0	0	0	0	
6.11: Frames Which Cease to Be Rigid When Detached from Their Supports	0	0	0	0	0	
6.12: Machines	0	0	0	0	0	
Chapter 8: Friction				-		
8.1: Introduction	0	0	0	0	0	
8.2: The Laws of Dry Friction. Coefficients of Friction $F_m = \mu_s N$ $F_k = \mu_k N$	0	0	0	0	0	
8.3: Angles of Friction $\tan \phi_s = \frac{F_m}{N} = \frac{\mu_s N}{N} \rightarrow \tan \phi_s = \mu_s \tan \phi_k = \frac{F_k}{N} = \frac{\mu_k N}{N} \rightarrow \tan \phi_k = \mu_k$	0	0	0	0	0	
8.4: Problems Involving Dry Friction	0	0	0	0	0	
8.5: Wedges	0	0	0	0	0	
8.6: Square-Threaded Screws	0	0	0	0	0	
$Q = P \frac{a}{r} L = nP$						
8.7: Journal Bearings. Axle Friction $M = Rr\sin\phi_k \approx Rr\mu_k$ $r_f = r\sin\phi_k \approx r\mu_k$	0	0	0	0	0	
8.9: Wheel Friction. Rolling Resistance Pr = Wb	0	0	0	0	0	
TE I	END					

Statics Survey Form B

1st Round of Delphi - Likert Scale Questionnaire on the Importance of Various Statics Topics Selected for High School Engineering Curriculum (For the Calculus Portion)

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Impo	ortant					
Engineering Analytic Topics & Typical Formulas		Li	kert So	cale		Comment
	(Sco		lmpor st to N		from	
	1	2	3	4	5	
Chapter 5: Distributed Forces: Centroids and Centers of Gravity						
5.1: Introduction	0	0	0	0	0	
Areas and Lines 5.2: Center of Gravity of a Two-Dimensional Body	0	0	0	0	0	
$Plate: \sum F_{z}: W = \Delta W_{1} + \Delta W_{2} + \ldots + \Delta W_{n} \qquad \sum M_{y}: \overline{x}W = x_{1} \Delta W + x_{2} \Delta W + \ldots + x_{n} \Delta W$ $\sum M_{x}: \overline{y}W = y_{1} \Delta W + y_{2} \Delta W + \ldots + y_{n} \Delta W$						
$W = \int dW \overline{x}W = \int x dW \overline{y}W = \int y dW$						
Wire: $\sum M_y$: $\overline{x}W = \sum x\Delta W$ $\sum M_x$: $\overline{y}W = \sum y\Delta W$						
5.3: Centroids of Areas and Lines <i>Plate</i> : $\Delta W = \gamma \Delta A$ $W = \gamma A$ $\overline{x}A = \int x dA$ $\overline{y}A = \int y dA$	0	0	0	0	0	
Line: $\Delta W = \gamma a \Delta L \overline{x}L = \int x dL \overline{y}L = \int y dL$						
5.4: First Moments of Areas and Lines	0	0	0	0	0	
$\overline{x}A = Q_y = \int x dA \overline{y}A = Q_x = \int y dA$						
5.5: Composite Plates and Wires $\overline{X}\sum W = \sum \overline{x}W \overline{Y}\sum W = \sum \overline{y}W Q_y = \overline{X}\sum A = \sum \overline{x}A Q_x = \overline{Y}\sum A = \sum \overline{y}A$	0	0	0	0	0	
5.6: Determination of Centroids by Integration	0	0	0	0	0	
$Q_{y} = \overline{x}A = \int \overline{x}_{el} dA Q_{x} = \overline{y}A = \int \overline{y}_{el} dA$						

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas		Lil	kert So	cale		Comment		
	(Sco	re of l Lea	(mpor st to N		from			
	1	2	3	4	5			
Chapter 5: Distributed Forces: Centroids and Centers of Gravity (Con	ntinue	ed)						
5.7: Theorems of Pappus-Guldinus	0	0	0	0	0			
$A = 2\pi \overline{y}L V = 2\pi \overline{y}A$								
5.8: Distributed Loads on Beams	0	0	0	0	0			
$W = \int_{O}^{L} w dx W = \int dA = A (OP)W = \int x dW (OP)A = \int_{O}^{L} x dA$								
5.9: Forces on Submerged Surfaces	0	0	0	0	0			
$w = bp = b\gamma h$								
Volumes	0	0	0	0	0			
5.10: Center of Gravity of a Three- Dimensional Body. Centroid of a Volume								
$\overline{x}W = \int xdW \overline{y}W = \int ydW \overline{z}W = \int zdW$								
$\overline{x}V = \int xdV \overline{y}V = \int ydV \overline{z}V = \int zdV$								
5.11: Composite Bodies	0	0	0	0	0			
$\overline{X}\sum W = \sum \overline{x}W \overline{Y}\sum W = \sum \overline{y}W \overline{Z}\sum W = \sum \overline{z}W$								
$\overline{X}\sum V = \sum \overline{x}V \overline{Y}\sum V = \sum \overline{y}V \overline{Z}\sum V = \sum \overline{z}V$								
5.12: Determination of Centroids of Volumes by Integration	0	0	0	0	0			
$\overline{x}V = \int \overline{x}_{el} dV \overline{y}V = \int \overline{y}_{el} dV \overline{z}V = \int \overline{z}_{el} dV \overline{x}V = \int \overline{x}_{el} dV$								

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas		Lił	cert So	ale		Comment		
	(Sco	re of l Lea	impor st to N		from			
	1	2	3	4	5			
Chapter 7: Forces in Beams and Cables								
7.1: Introduction	0	0	0	0	0			
7.2: Internal Forces in Members	0	0	0	0	0			
Beams 7.3: Various Types of Loading and Support	0	0	0	0	0			
7.4: Shear and Bending Moment in a Beam	0	0	0	0	0			
7.5: Shear and Bending-Moment Diagrams	0	0	0	0	0			
7.6: Relations among Load, Shear, and Bending Moment	0	0	0	0	0			
$\frac{dV}{dx} = -w V_D - V_C = -\int_{x_C}^{x_D} w dx = -wx = -(\text{Area under load curve between C an D})$								
$\frac{dM}{dx} = V M_D - M_C = \int_{x_C}^{x_D} V dx = -(\text{Area under shear curve between C an D})$								
<u>Cables</u> 7.7: Cables with Concentrated Loads	0	0	0	0	0			
7.8: Cables with Distributed Loads	0	0	0	0	0			
$T\cos\theta = T_o$ $T\sin\theta = W$ $T = \sqrt{T_o^2 + W^2}$ $\tan\theta = \frac{W}{T_o}$								
7.9: Parabolic Cable	0	0	0	0	0			
$y = \frac{wx^2}{2T_o}$								

Engineering Subject: Statics									
Likert Scale (Score of Importance) Note:	Likert Scale (Score of Importance) Note:								
1 → Totally Unimportant; 2 → Not So Important; 3 → Might Be Important; 4 → Important; 5 → Very Important									
Engineering Analytic Topics & Typical Formulas		Lil	kert So	cale		Comment			
	(Sco		(mpor st to N	tance f Iost)	from				
	1	2	3	4	5				
Chapter 7: Forces in Beams and Cables (Continued)									
7.10: Catenary	0	0	0	0	0				
$T = \sqrt{T_o^2 + w^2 s^2} c = \frac{T_o}{w} T_o = wc W = ws T = w\sqrt{c^2 + s^2} dx = ds \cos \theta = \frac{T_o}{T} ds = \frac{wcds}{w\sqrt{c^2 + s^2}}$									
$x = \int_{0}^{s} \frac{ds}{\sqrt{1 + \frac{s^{2}}{c^{2}}}} = c \left[\sinh^{-1} \frac{s}{c} \right]_{0}^{s} = c \sinh^{-1} \frac{s}{c} s = c \sinh \frac{x}{c} y = c \cosh \frac{x}{c}$									
$y^{2} - s^{2} = c^{2}$ $T_{o} = wc$ $W = ws$ $T = wy$ $h = y_{A} = c$									
Chapter 8: Friction									
8.8: Thrust Bearings. Disk Friction	0	0	0	0	0				
$\Delta M = r\Delta F = \frac{r\mu_k P\Delta A}{\pi \left(R_2^2 - R_1^2\right)}$									
$M = \frac{\mu_k P}{\pi \left(R_2^2 - R_1^2\right)} \int_0^{2\pi} \int_{R_1}^{R_2} r^2 dr d\theta = \frac{\mu_k P}{\pi \left(R_2^2 - R_1^2\right)} \int_0^{2\pi} \left[\frac{r^{2+1}}{2+1}\right]_{R_1}^{R_2} d\theta = \frac{\mu_k P}{\pi \left(R_2^2 - R_1^2\right)} \int_0^{2\pi} \frac{1}{3} \left(R_2^3 - R_1^3\right) d\theta$									
Ring area : $M = \frac{2}{3} \mu_k P \frac{R_2^3 - R_1^3}{R_2^2 - R_1^2}$ Full circle : $M = \frac{2}{3} \mu_k P R$									
8.10: Belt Friction	0	0	0	0	0				
$\ln \frac{T_2}{T_1} = \mu_s \beta \frac{T_2}{T_1} = e^{\mu_s \beta}$									
(For other formulas, refer to pp. 451-452)									

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas	(6 -		sert So		e	Comment		
	(50	ore of l Lea	st to N		Irom			
	1	2	3	4	5			
Chapter 9: Distributed Forces: Moments of Inertia								
9.1: Introduction	0	0	0	0	0			
Moments of Inertia of Areas 9.2: Second Moment, or Moment of Inertia, of an Area	0	0	0	0	0			
$R = \int ky dA = k \int y dA M = \int ky^2 dA = k \int y^2 dA R = \int \gamma y dA = \gamma \int y dA M_x = \int y^2 dA = \gamma \int y^2 dA$								
9.3: Determination of the Moment of Inertia of an Area by Integration	0	0	0	0	0			
$I_x = \int y^2 dA I_y = \int x^2 dA dA = b dy dI_x = y^2 b dy$								
$I_{x} = \int_{0}^{h} by^{2} dy = \frac{1}{3}BH^{3} dI_{x} = \frac{1}{3}y^{3} dx dI_{y} = x^{2} dA = x^{2} y dx$								
9.4: Polar Moment of Inertia	0	0	0	0	0			
$J_{o} = \int r^{2} dA = \int (x^{2} + y^{2}) dA = \int y^{2} dA + \int x^{2} dA J_{o} == I_{x} + I_{y}$								
9.5: Radius of Gyration of an Area	0	0	0	0	0			
$I_x = k_x^2 A \rightarrow k_x = \sqrt{\frac{I_x}{A}} I_y = k_y^2 A \rightarrow k_y = \sqrt{\frac{I_y}{A}} J_o = k_o^2 A \rightarrow k_o = \sqrt{\frac{J_o}{A}}$								
9.6: Parallel-Axis Theorem	0	0	0	0	0			
$I = \int y^2 dA$								
$I = \int y^{2} dA = \int (y'+d)^{2} dA = \int y'^{2} dA + 2d \int y' dA + d^{2} \int dA$								
$I = \overline{I} + Ad^2$ $k^2 = \overline{k}^2 + d^2$ $J_o = \overline{J}_o + Ad^2$ or $k_o^2 = \overline{k}_o^2 + d^2$								
9.7: Moments of Inertia of Composite Areas	0	0	0	0	0			
(For formulas, refer to p. 485)								

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas		Li	kert So	cale		Comment		
	(Sco		Impor st to N		from			
	1	2	3	4	5			
Chapter 9: Distributed Forces: Moments of Inertia (Continued)								
9.8: Product of Inertia	0	0	0	0	0			
$I_{xy} = \int xy \ dA = \int (x' + \overline{x})(y' + \overline{y}) dA = \int x' \ y' \ dA + \overline{y} \int x' \ dA + \overline{x} \int y' \ dA + \overline{xy} \int dA I_{xy} == \overline{I}_{x'y'} + \overline{xy}A$								
9.9: Principal Axes and Principal Moments of Inertia (For formulas, refer to pp. 498-500)	0	0	0	0	0			
9.10: Mohr's Circle for Moments and Products of Inertia	0	0	0	0	0			
Moments of Inertia of Masses 9.11: Moment of Inertia of a Mass	0	0	0	0	0			
$I = \int r^2 dm I = k^2 m or k = \sqrt{\frac{I}{m}} I_x = \int (y^2 + z^2) dm I_y = \int (z^2 + x^2) dm$								
$I_z = \int \left(x^2 + y^2\right) dm$								
9.12: Parallel-Axis Theorem	0	0	0	0	0			
$x = x' + \overline{x}$ $y = y' + \overline{y}$ $z = z' + \overline{z}$ $I_x = \int (y^2 + z^2) dm$								
$I_{x} = \bar{I}_{x'} + m(\bar{y}^{2} + \bar{z}^{2}) = \int \left[(y' + \bar{y})^{2} + (z' + \bar{z})^{2} \right] dm$								
$= \int \left(y'^2 + z'^2 \right) dm + 2\overline{y} \int y' dm + 2\overline{z} \int z' dm + \left(\overline{y}^2 + \overline{z}^2 \right) \int dm$								
$I_{y} = \bar{I}_{y'} + m(\bar{z}^{2} + \bar{x}^{2}) I_{z} = \bar{I}_{z'} + m(\bar{x}^{2} + \bar{y}^{2}) I = \bar{I} + md^{2} k^{2} = \bar{k}^{2} + d^{2}$								

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas		Lil	cert So	ale		Comment		
	(Sco		import st to N		from			
	1	2	3	4	5			
Chapter 9: Distributed Forces: Moments of Inertia (Continued)								
9.13: Moments of Inertia of Thin Plates	0	0	0	0	0			
$ \begin{bmatrix} I_{AA',mass} = \int r^2 dm \\ dm = \rho t \ dA \end{bmatrix} I_{AA',mass} = \rho t \int r^2 dA $								
$I_{AA',mass} = \rho t I_{AA',area} I_{BB',mass} = \rho t I_{BB',area} I_{CC',mass} = \rho t J_{C,area} I_{CC'} = I_{AA'} + I_{BB'}$								
Rectangular Plate								
$I_{AA',mass} = \rho t I_{AA',area} = \rho t \left(\frac{1}{12}a^3b\right) I_{BB',mass} = \rho t I_{BB',area} = \rho t \left(\frac{1}{12}ab^3\right)$								
$I_{AA'} = \frac{1}{12}ma^2 I_{BB'} = \frac{1}{12}mb^2 I_{CC'} = I_{AA'} + I_{BB'} = \frac{1}{12}m(a^2 + b^2)$								
Circular Plate								
$I_{AA',mass} = \rho t I_{AA',area} = \rho t \left(\frac{1}{4}\pi r^4\right) I_{AA'} = I_{BB'} = \frac{1}{4}mr^2 I_{CC'} = I_{AA'} + I_{BB'} = \frac{1}{12}mr^2$								
9.14: Determination of the Moment of Inertia of a Three-Dimensional Body by Integration (For formulas, refer to p. 517).	0	0	0	0	0			
9.15: Moments of Inertia of Composite Bodies	0	0	0	0	0			
	-	-	-	-	-			

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas	(Sco	ore of l	kert So Impor st to N	tance	from	Comment		
	1	2	3	4	5			
Chapter 9: Distributed Forces: Moments of Inertia (Continued)								
9.16: Moment of Inertia of a Body with Respect to an Arbitrary Axis through O. Mass Products of Inertia	0	0	0	0	0			
$I_{OL} = \int p^2 dm = \int \left \vec{\lambda} \times \vec{r} \right ^2 dm = \int \left[(\lambda_x y - \lambda_y x)^2 + (\lambda_y z - \lambda_z y)^2 + (\lambda_z x - \lambda_x z)^2 \right]$								
$=\lambda_x^2\int (y^2+z^2)dm+\lambda_y^2\int (z^2+x^2)dm+\lambda_z^2\int (x^2+y^2)dm-$								
$2\lambda_x\lambda_y\int xy\ dm-2\lambda_y\lambda_z\int yz\ dm-2\lambda_z\lambda_x\int zx\ dm$								
$I_{xy} = \int xy \ dm I_{yz} = \int yz \ dm I_{zx} = \int zx \ dm$								
$I_{OL} = I_x \lambda_x^2 + I_y \lambda_y^2 + I_z \lambda_z^2 - 2I_{xy} \lambda_x \lambda_y - 2I_{yz} \lambda_y \lambda_{yz} - 2I_{zx} \lambda_z \lambda_x$								
$I_{xy} = \overline{I}_{x'y'} + m\overline{xy} I_{yz} = \overline{I}_{y'z'} + m\overline{yz} I_{zx} = \overline{I}_{z'x'} + m\overline{zx}$								
9.17: Ellipsoid of Inertia. Principal Axes of Inertia	0	0	0	0	0			
$(OQ)\lambda_{x} = x (OQ)\lambda_{y} = y (OQ)\lambda_{z} = z I_{x}x^{2} + I_{y}y^{2} + I_{z}z^{2} - 2I_{xy}xy - 2I_{yz}yz - 2I_{zx}zx = 1$								
$I_{x'}x'^{2} + I_{y'}y'^{2} + I_{z'}z'^{2} = 1 I_{OL} = I_{x'}\lambda_{x'}^{2} + I_{y'}\lambda_{y'}^{2} + I_{z'}\lambda_{z'}^{2}$								

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas		Lil	kert S	cale		Comment		
	(Sco	ore of l Lea	lmpor st to N		from			
	1	2	3	4	5			
Chapter 9: Distributed Forces: Moments of Inertia (Continued)								
9.18: Determination of the Principal Axes and Principal Moments of Inertia of a Body of Arbitrary Shape	0	0	0	0	0			
$ \left. \begin{array}{l} \nabla f = (2K)\vec{r} \\ K = \text{constant} \\ \vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \end{array} \right\} \rightarrow \nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k} $								
$\begin{bmatrix} K = \text{constant} \\ \hline & & \uparrow \end{bmatrix} \nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k$								
$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ $f(x, y, z) = I_x x^2 + I_y y^2 + I_z z^2 - 2I_{xy} xy - 2I_{yz} yz - 2I_{zx} zx - 1$								
$f(x, y, z) = I_x x^2 + I_y y^2 + I_z z^2 - 2I_{xy} xy - 2I_{yz} yz - 2I_{zx} zx - 1$								
$I_x - K - I_{xy} - I_{zx}$								
$\begin{vmatrix} I_{x} - K & -I_{xy} & -I_{zx} \\ -I_{xy} & I_{y} - K & -I_{yz} \\ -I_{zx} & -I_{yz} & I_{z} - K \end{vmatrix} = 0$								
$ -I_{zx} - I_{yz} - I_z - K $								
(More formulas on p.p. 534-535)								

Engineering Subject: Statics						
Likert Scale (Score of Importance) Note:						
1 → Totally Unimportant; 2 → Not So Important; 3 → Might Be Important; 4 → Important; 5 → Very Imp Engineering Analytic Topics & Typical Formulas		re of l	kert So Impor st to N	tance	from	Comment
	1	2	3	4	5	
Chapter 10: Method of Virtual Work						
10.1: Introduction	0	0	0	0	0	
10.2: Work of a Force $dU = \vec{F} \bullet d\vec{x} dU = F ds \cos \alpha dU = M d\theta$	0	0	0	0	0	
10.3: Principle of Virtual Work $\delta U = \vec{F}_1 \bullet \delta \vec{r} + \vec{F}_2 \bullet \delta \vec{r} + \dots + \vec{F}_n \bullet \delta \vec{r} = \left(\vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n\right) \bullet \delta \vec{r} \rightarrow \delta U = \vec{R} \bullet \delta \vec{r}$	0	0	0	0	0	
10.4: Applications of the Principle of Virtual Work $x_{B} = 2\ell \sin \theta y_{C} = \ell \cos \theta \delta x_{B} = 2\ell \cos \theta \delta \theta \delta y_{C} = -\ell \sin \theta \delta \theta$ $\delta U = \delta U_{Q} + \delta U_{P} = -Q \delta x_{B} - P \delta y_{C} = -2Q\ell \cos \theta \ \delta \theta + P\ell \sin \theta \ \delta \theta$ $\delta U = 0 \rightarrow 2Q\ell \cos \theta \ \delta \theta = P\ell \sin \theta \ \delta \theta \rightarrow Q = \frac{1}{2}P \tan \theta B_{x} = -\frac{1}{2}P \tan \theta$	0	0	0	0	0	
10.5: Real Machines. Mechanical Efficiency $\delta U = -Q \delta x_B - P \delta y_C - F \delta x_B = -2Q \ell \cos \theta \delta \theta + P \ell \sin \theta \delta \theta - \mu P \ell \cos \theta \delta \theta$ $\delta U = 0 \rightarrow 2Q \ell \cos \theta \delta \theta = P \ell \sin \theta \delta \theta - \mu P \ell \cos \theta \delta \theta \rightarrow$ $\eta = \frac{\text{output work}}{\text{input work}} = \frac{2Q \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta}$ $\eta = \frac{2 \left(\frac{1}{2} P(\tan \theta - \mu)\right) \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta} = \frac{P(\tan \theta - \mu) \ell \cos \theta \delta \theta}{P \ell \sin \theta \delta \theta} = 1 - \mu \cot \theta$	0	0	0	0	0	

Engineering Subject: Statics	Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:									
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Import	$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas		Lik	kert So	cale		Comment			
	(Sco		impor st to N	tance f Iost)	from				
	1	2	3	4	5				
Chapter 10: Method of Virtual Work (Continued)									
10.6: Work of a Force during a Finite Displacement	0	0	0	0	0				
$dU = \vec{F} \bullet d\vec{r} \rightarrow U_{1 \to 2} = \int_{A_1}^{A_2} \vec{F} \bullet d\vec{r} dU = F ds \cos \alpha \rightarrow U_{1 \to 2} = \int_{S_1}^{S_2} (F \cos \alpha) ds$									
$dU = Md\theta \rightarrow U_{1 \rightarrow 2} = \int_{\theta_1}^{\theta_2} M \ d\theta U_{1 \rightarrow 2} = M(\theta_2 - \theta_1)$									
Work of a weight									
$dU = -W dy \rightarrow U_{1 \to 2} = -\int_{y_1}^{y_2} W dy U_{1 \to 2} = -W(y_2 - y_1) = -W \Delta y$									
Work of the force exerted by a spring									
$F = kx \rightarrow dU = -F dx = -kx dx$									
$U_{1\to 2} = -\int_{x_1}^{x_2} kx \ dx = \frac{1}{2} kx_1^2 - \frac{1}{2} kx_2^2 U_{1\to 2} = -\frac{1}{2} (F_1 + F_2) \Delta x$									
10.7: Potential Energy	0	0	0	0	0				
$U_{1\to 2} = (V_g)_1 - (V_g)_2 \leftarrow V_g = Wy U_{1\to 2} = (V_e)_1 - (V_e)_2 \leftarrow V_e = \frac{1}{2}kx^2$									
$dU = -dV U_{1 \to 2} = V_1 - V_2$									

Engineering Subject: Statics								
Likert Scale (Score of Importance) Note:								
$1 \rightarrow$ Totally Unimportant; $2 \rightarrow$ Not So Important; $3 \rightarrow$ Might Be Important; $4 \rightarrow$ Important; $5 \rightarrow$ Very Important								
Engineering Analytic Topics & Typical Formulas		Lil	cert S	cale		Comment		
	(Sco	re of l Lea	lmpor st to N		from			
	1	2	3	4	5			
Chapter 10: Method of Virtual Work (Continued)								
10.8: Potential Energy and Equilibrium	0	0	0	0	0			
$\frac{dV}{d\theta} = 0 V_e = \frac{1}{2}kx_B^2 V_g = Wy_C x_B = 2\ell\sin\theta y_C = \ell\cos\theta$								
$V_e = \frac{1}{2}k(2\ell\sin\theta)^2 V_g = W(\ell\cos\theta) V = V_e + V_g = 2k\ell^2\sin^2\theta + W\ell\cos\theta$								
$\frac{dV}{d\theta} = 4k\ell^2 \sin\theta\cos\theta - W\ell\sin\theta = 0 \frac{dV}{d\theta} = \ell\sin\theta(4k\ell\cos\theta - W) = 0$								
10.9: Stability of Equilibrium	0	0	0	0	0			
$\frac{dV}{d\theta} = 0 \frac{d^2V}{d\theta^2} > 0 : \text{ stable equilibrium } \frac{dV}{d\theta} = 0 \frac{d^2V}{d\theta^2} < 0 : \text{ unstable equilibrium } $								
$\frac{\partial V}{\partial \theta_1} = \frac{\partial V}{\partial \theta_2} = 0 \left(\frac{\partial^2 V}{\partial \theta_1 \partial \theta_2}\right)^2 - \frac{\partial^2 V}{\partial \theta_1^2} \frac{\partial^2 V}{\partial \theta_2^2} < 0 \frac{\partial^2 V}{\partial \theta_1^2} > 0 \text{or} \frac{\partial^2 V}{\partial \theta_2^2} > 0$								
TE ENI)							

Part Three Findings from the Research Project

List 1A. Pre-Calculus Based Statics Topics That Possibly Could Be Taught at 9th Grade

Chapter/Section	Page Numbers	Number of Pages				
Chapter 1: Introduction (pp. 1-13 \rightarrow 13 pages sub-total. 6 sections out of	U					
1.1: What Is Mechanics?	1-13	13				
1.2: Fundamental Concepts and Principles		10				
1.3: Systems of Units						
1.4: Conversion from One System of Units to Another						
1.5: Method of Problem Solution						
1.6: Numerical Accuracy						
Chapter 2: Statics of Particles (pp. 15-63 \rightarrow 49 pages sub-total. 15 section	ons out of 15)					
2.1: Introduction	15-63	49				
2.2: Force on a Particle. Resultant of Two Forces						
2.3: Vectors						
2.4: Addition of Vectors						
2.5: Resultant of Several Concurrent Forces						
2.6: Resolution of a Force into Components						
2.7: Rectangular Components of a Force. Unit Vector						
2.8: Addition of Forces by Summing x and y Components						
2.9: Equilibrium of a Particle						
2.10: Newton's First Law of Motion						
2.11: Problems Involving the Equilibrium of a Particle. Free-Body Diagrams						
2.12: Rectangular Components of a Force in Space						
2.13: Force Defined by Its Magnitude and Two Points on Its Line of Action						
2.14: Addition of Concurrent Forces in Space						
2.15: Equilibrium of a Particle in Space						
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (pp. 74-145 →	72 pages sub-total.	21 sections out of 21)				
3.1: Introduction	74-145	72				
3.2: External and Internal Forces						
3.3: Principle of Transmissibility. Equivalent Forces						
3.4: Vector Product of Two Vectors						
3.5: Vector Products Expressed in Terms of Rectangular Components						
3.6: Moment of a Force about a Point						
3.7: Varignon's Theorem						
3.8: Rectangular Components of the Moment of a Force						
3.9: Scalar Product of Two Vectors						
3.10: Mixed Triple Product of Three Vectors						

List 1A. (Continued)

Chapter/Section	Page Numbers	Number of Pages		
Chapter 3: Rigid Bodies - Equivalent Systems of Forces (Continued)				
3.11: Moment of a Force about a Given Axis	↑	\uparrow		
3.12: Moment of a Couple				
3.13: Equivalent Couples				
3.14: Addition of Couples				
3.15: Couples Can Be Represented by Vectors				
3.16: Resolution of a Given Force Into a Force at O and a Couple				
3.17: Reduction of a System of Forces to One Force and One Couple				
3.18: Equivalent Systems of Forces				
3.19: Equipollent Systems of Vectors				
3.20: Further Reduction of a System of Forces				
3.21: Reduction of a System of Forces to a Wrench				
Chapter 4: Equilibrium of Rigid Bodies (pp. 158-210 → 53 pages sub-to	otal. 9 sections out of	of 9)		
4.1: Introduction	158-210	53		
4.2: Free-Body Diagram				
4.3: Reactions at Supports and Connections for a Two-Dimensional Structure				
4.4: Equilibrium of a Rigid Body in Two Dimensions				
4.5: Statically Indeterminate Reactions. Partial Constraints				
4.6: Equilibrium of a Two-Force Body				
4.7: Equilibrium of a Three-Force Body				
4.8: Equilibrium of a Rigid Body in Three Dimensions				
4.9: Reactions at Supports and Connections for a Three-Dimensional Structure				
Chapter 5: Distributed Forces: Centroids & Centers of Gravity				
(pp. 219-273 \rightarrow 55 pages sub-total. 0 sections out of 11)				
Chapter 6: Analysis of Structures (pp. 284-342 → 59 pages sub-total. 12	sections out of 12)			
6.1: Introduction	284-342	59		
6.2: Definition of a Truss				
6.3: Simple Trusses				
6.4: Analysis of Trusses by the Method of Joints				
6.5: Joints under Special Loading Conditions	1			
6.6: Space Trusses	1			
6.7: Analysis of Trusses by the Method of Sections				
6.8: Trusses Made of Several Simple Trusses				
6.9: Structures Containing Multiforce Members				

List 1A. (Continued)

Chapter/Section	Page Numbers	Number of Pages	
Chapter 6: Analysis of Structures (Continued)			
6.10: Analysis of a Frame	\uparrow	\uparrow	
6.11: Frames Which Cease to Be Rigid When Detached from Their Supports] '		
6.12: Machines			
Chapter 7: Forces in Beams and Cables (pp. 353-401 \rightarrow 49 pages sub-total. 0 sections out of 10)			
Chapter 8: Friction (pp. 411-460 \rightarrow 50 pages sub-total. 8 sections out of 10)			
8.1: Introduction	411-441	31	
8.2: The Laws of Dry Friction. Coefficients of Friction			
8.3: Angles of Friction			
8.4: Problems Involving Dry Friction			
8.5: Wedges			
8.6: Square-Threaded Screws			
8.7: Journal Bearings. Axle Friction			
8.9: Wheel Friction. Rolling Resistance	443-450	8	
Chapter 9: Distributed Forces: Moments of Inertia (pp. 471-544 → 74 pages sub-total. 0 sections out of 18)			
Chapter 10: Method of Virtual Work (pp. 557-591→ 35 pages sub-total. 0 sections out of 9)			

List 1A. (Continued)

Summary		
Total Number of Pages Covered by Text (Excluding "Review and Summary for	509	
Chapters," "Review Problems" and "Computer Problems Sections)		
Total Numbers of Sections Covered Under All Chapters	71 out of 121	
Percentage of Pre-Calculus Sections		
$\%_{\text{Pre-Calculus}} = \left(\frac{\text{Number of Pre - Calculus Sections}}{\text{Total Number of Sections}}\right)(100\%) = \left(\frac{1}{100\%}\right)$	$\left(\frac{71}{121}\right)(100\%) = 58.7\%$	
Total Numbers of Chapters Covered 6 out of 10		
Percentage of Chapters with Pre-Calculus Sections		
$\%_{\text{Pre-Calculus}} = \left(\frac{\text{Number of Chapters with Pre - Calculus Sections}}{\text{Total Number of Chapters}}\right) (100\%) = \left(\frac{100\%}{100\%}\right)$	$\left(\frac{6}{10}\right)(100\%) = 60.0\%$	
Total Number of Pages Covered by Pre-Calculus Portion 285		
Percentage of Pre-Calculus Volume		
$\%_{\text{Pre-Calculus}} = \left(\frac{\text{Number of Pre - Calculus Pages}}{\text{Total Number of Pages}}\right) (100\%) = \left(\frac{2}{5}\right)$	$\left(\frac{285}{509}\right)(100\%) = 56.0\%$	

List 1B. Pre-Requisite Mathematics and Science Topics to Be Reviewed Before Teaching the Pre-Calculus Portion of Statics Topics to 9th Grade Students

Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code)				
[Pre-requisite Math Skills/Science Principles] (GPS Code) → Grade (Table No.)				
Math	Physics			
 [areas of geometric shapes: circle, triangle, etc.] (M5M1) → 5th and (2B) (M6M2) → 6th (2C) [coordinate system] (M4G3) → 4th (2B) [cross product] → To be taught as a special math topic [dot product] → To be taught as a special math topic [four operations] (M1N3) → 1st (2A) + (M2N3) → 2nd (1A), or (M7N1) → 7th (2A) [geometry: point, axis/line, 3D body] (M6G1) (M6G2) (M6M3) → 6th (2B) [linear algebra](MA2A6) (MA2A7) (MA2A8) (MA2A9) → 10th (2G) → To be taught as a special math topic [measurement: time] (M2M2) → 2nd (2C) [Parallelogram Law for the Addition of Force/Vector Graphics] (MA3A10) → 11th (2H) → To be taught as a special math topic [problem-solving] (M3N5) → 3rd (2A) [sigma notation] (M6N1) → 6th (1A) or (MA1A3) → 9th (2E) → To be taught as a special math topic [square root] (M8N1) → 8th (2A) [surface] (M6M4) → 6th (2B) [trigonometric functions] (MA2G2) → 10th (2F) → To be taught as a special math topic [unit conversion] (M6M1) → 6th (2C) [vector graphics] (MA3A10) → 9th (2H) → To be taught as a special math topic 	1. [acceleration] (S8P3) \rightarrow 8th (3C) 2. [force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C) 3. [lever] (S4P3) \rightarrow 4 th (3A) 4. [motion] (SKP2) \rightarrow K (3A) 5. [Newton's 1 st , 2 nd and 3 rd Laws] (SP1) \rightarrow 9 th (3C) 6. [Newton's Law of Gravitation] (S8P5) \rightarrow 8 th (3C) 7. [scientific inquiry] (S7CS9) \rightarrow 7 th (3B)			

List 2A. Calculus Based Statics Topics for Post-Secondary Engineering Education

Chapter/Section	Page Nos.	Chapter/Section	Page Nos.
Chapter 5: Distributed Forces: Centroids & Center	s of Gravity	Chapter 7: Forces in Beams and Cables	
5.1: Introduction	219-273	7.1: Introduction	354-401
5.2: Center of Gravity of a Two-Dimensional Body		7.2: Internal Forces in Members	
5.3: Centroids of Areas and Lines		7.3: Various Types of Loading and Support	
5.4: First Moments of Areas and Lines		7.4: Shear and Bending Moment in a Beam	
5.5: Composite Plates and Wires		7.5: Shear and Bending-Moment Diagrams	
5.6: Determination of Centroids by Integration		7.6: Relations among Load, Shear, and Bending Moment	
5.7: Theorems of Pappus-Guldinus		7.7: Cables with Concentrated Loads	
5.8: Distributed Loads on Beams		7.8: Cables with Distributed Loads	
5.9: Forces on Submerged Surfaces		7.9: Parabolic Cable	
5.10: Center of Gravity of a Three- Dimensional Body. Centroid of a		7.10: Catenary	
Volume		Chapter 8: Friction	•
5.11: Composite Bodies		8.8: Thrust Bearings. Disk Friction	442-443
5.12: Determination of Centroids of Volumes by Integration		8.10: Belt Friction	450-460
Chapter 9: Distributed Forces: Moments of Inertia			
9.1: Introduction	472-544	9.10: Mohr's Circle for Moments and Products of Inertia	←
9.2: Second Moment, or Moment of Inertia, of an Area		9.11: Moment of Inertia of a Mass	1
9.3: Determination of the Moment of Inertia of an Area by Integration		9.12: Parallel-Axis Theorem	
9.4: Polar Moment of Inertia		9.13: Moments of Inertia of Thin Plates	
9.5: Radius of Gyration of an Area		9.14: Determination of the Moment of Inertia of a Three-Dimensional	
		Body by Integration	
9.6: Parallel-Axis Theorem		9.15: Moments of Inertia of Composite Bodies	
9.7: Moments of Inertia of Composite Areas		9.16: Moment of Inertia of a Body with Respect to an Arbitrary Axis	
		through O. Mass Products of Inertia	
9.8: Product of Inertia		9.17: Ellipsoid of Inertia. Principal Axes of Inertia	
9.9: Principal Axes and Principal Moments of Inertia		9.18: Determination of the Principal Axes and Principal Moments of	
		Inertia of a Body of Arbitrary Shape	
Chapter 10: Method of Virtual Work			
10.1: Introduction	557-591	10.6: Work of a Force during a Finite Displacement	←
10.2: Work of a Force		10.7: Potential Energy	`
10.3: Principle of Virtual Work		10.8: Potential Energy and Equilibrium	
10.4: Applications of the Principle of Virtual Work		10.9: Stability of Equilibrium	
10.5: Real Machines. Mechanical Efficiency			

List 2B. Pre-Requisite Math and Science Topics to Be Reviewed Before Teaching the Calculus Portion of Statics Topics

Math & Science Pre-requisite Topics & Completion Grade (Georgia Performance Standard Code)			
[Pre-requisite Math Skills/Science Principles] (GPS Code) \rightarrow Grade (Table No.)			
Image:	Physics/Chemistry1. [acceleration] (S8P3) \rightarrow 8th (3C)2. [force] (S4P3) \rightarrow 4 th (3A) or (S8P3) \rightarrow 8 th (3C)3. [lever] (S4P3) \rightarrow 4 th (3A)4. [motion] (SKP2) \rightarrow K (3A)5. [Newton's 1 st , 2 nd and 3 rd Laws] (SP1) \rightarrow 9 th (3C)6. [Newton's Law of Gravitation] (S8P5) \rightarrow 8 th (3C)7. [potential energy] (SP3) \rightarrow 9 th (3C)8. [power] (SP3) \rightarrow 9 th (3C)9. [scientific inquiry] (S7CS9) \rightarrow 7 th (3B)10. [work] (S8P3) \rightarrow 8 th (3C)		