HIGH SCHOOL APPROPRIATE ENGINEERING CONTENT KNOWLEDGE IN THE

INFUSION OF ENGINEERING DESIGN INTO K-12 CURRICULUM

(Under the General Topic of "Engineering Design in Secondary Education" and of

"Vision and Recommendations for Engineering-Oriented Professional Development")

Summer 2009

College of Education, University of Georgia

Professors:

Dr. Robert Wicklein, Dr. Roger Hill and Dr. John Mativo

Advisors:

Dr. Sidney Thompson and Dr. David Gattie (Driftmier Engineering Center)

Student:

Edward Locke (edwardnlocke@yahoo.com)

Completion Date:

Thursday, July 9, 2009

Note:

This part of the Project has been originally written during Spring 2009, in the NCETE Core 4 - Engineering Design in STEM Education course taught by Dr. Kurt Becker (Utah State University), Dr. Mark Tufenkjian (California State University Los Angeles), Dr. Rodney L. Custer and Dr. Jenny Daugherty (Illinois State University). Substantial editing and extension has been made during Summer 2009

Table of Content

Content	Page
PART ONE: INTRODUCTION	1
Purpose of this Research Paper	1
The Particular or Immediate Purpose of the Research Paper	1
The General or Ultimate Aim of this Research Paper and its Seamless	
Connection to NCETE Research Agenda	2
Potential Significance of this Research Paper	3
Research Question	4
PART TWO: REVIEW OF LITERATURE	6
Rationales for this Research Paper	6
Previous Scholarly Endeavors at Infusion of Engineering Design into	
K-12 Technology Education	7
Existing Models to Help Solving the Problem of Shortage in	
Engineering Graduates	7
<i>New Ideas for a Cohesive and Systemic Improvement of K-12 Engineering</i> <i>and Technology Education in the United States</i>	8
Connection to NCETE Agenda	9
Importance of Engineering Analytic Knowledge Content	10
Nacassam Components for Engineering Oriented Professional	10
Development	11
Differences between Conceptual and Procedural Knowledge	12
Contributions of Scholars at the University of Georgia in Identifying	
Specific Engineering Analytic Knowledge Content for	
K-12 Institutions	14
PART THREE: K-12 STUDENTS' MATHEMATICS & SCIENCE	
PREPARATION BASED ON GEORGIA PERFORMANCE STANDARDS	
FOR A POTENTIAL IMPLEMENTATION OF ENGINEERING	
CURRICULUM	19
Limitation of This Study	19
Sections of Georgia Performance Standards Directly Relevant to the	
Infusion of Engineering Analytic Content Knowledge into	
the K-12 Curriculum	21
Mathematics Preparations	21
The Role of Mathematics Skills	21

Table of Content (Continued)

Content	Page
Applied Engineering Mathematics	23
Selection of Academic Performance Standards	23
An Urgent Need to Increase Domestic Students' Opportunities in	
Engineering Education	26
Georgia Performance Standards in Mathematics Directly Relevant to the	
Infusion of Engineering Analytic Content Knowledge throughout	
the K-12 Curriculum	28
Science Preparations: Physics, Chemistry and Materials, Environmental	
Science and Related Topics	39
Importance of Science Preparation	39
Georgia Performance Standards for Engineering and Technology	48
Characteristics of Georgia Performance Standards in	
Engineering and Technology	48
Mutual Compatibility between Georgia Performance Standards for	
Engineering and Technology and the Proposed Model for Infusing	
Engineering Design into K-12 Curriculum	50
Relevance of Georgia Performance Standards for Engineering and	
Technology to Infusion of Engineering Analytic Content Knowledge	
into K-12 Curriculum	53
PART FOUR: SELECTION OF HIGH SCHOOL APPROPRIATE	
ENGINEERING ANALYTIC CONTENT KNOWLEDGE FOR THE	
SUBJECT OF STATICS AND FLUID MECHANICS	55
Source materials	55
Procedures of Analysis and Selection	57
Adjustment for Mathematically "Highly-Talented" Students	59
PART FIVE: STRATEGIES FOR IMPLEMENTING ENGINEERING	
ANALYTIC AND PREDICTIVE PRINCIPLES AND COMPUTATIONAL	
SKILLS INTO K-12 ENGINEERING CURRICULUM	61
Structural Incorporation of Engineering Topics into K-12	
Engineering Curriculum	61
Strategy for Infusing Statics Topics into a Potentially Viable High School	
Engineering Curricilum	61
Proposed Strategy for Infusing Pre-calculus Level Statics Topics	61

Table of Content (Continued)

Content	Page
Strategy for Infusing Beginning Calculus Level Statics Topics	65
Strategy for Infusing Fluid Mechanics Topics into a Potentially Viable	
High School Engineering Curriculum	66
Strategy for Infusing Pre-calculus Level Fluid Mechanics Topics	66
Strategy for Infusing Beginning Calculus Level Fluid Mechanics Topics	70
Application of Calculus Skills in Undergraduate Engineering	
Foundation Courses	70
The Extent of Calculus Skills Used	70
General Applications of Calculus in Science and Engineering	71
Possibility for "Highly-Talented" Students	71
The Proposed Strategy for "Average" Students	72
Selecting the Most Important Engineering Analytic and Predictive Principles	
and Formulas for K-12 Engineering Curriculum	75
A Proposed Five-Point Likert Scale Survey Study	75
Reasons for Establishing the Order of Importance for Various Statics and	
Fluid Mechanics Topics	77
Review, Validation, and Approval of the Five-Point Likert Scale Four-	
Round Delphi Survey Forms	78
Delphi Survey with Participants	80
Completion and Statistic Analysis of Statics and Fluid Mechanics	
Survey Forms	82
Developing Appropriate Pedagogic Strategy for	
K-12 Engineering Curriculum	83
Differences between High School and College Students and Pedagogic	
Strategy for K-12 Engineering Curriculum	83
Modernization of Engineering Pedagogy	84
Important Considerations to be Taken	85
The Three-Method Approach	86
PART SIX: STRATEGIC VISION FOR ENGINEERING-ORIENTED	
PROFESSIONAL DEVELOPMENT	88
An Urgent Call for Farsighted and Long-term Strategic Thinking	88
Strategic Vision for an Up to Beginning Calculus-Level K-12 Engineering	
& Technology Teachers' Professional Development	90

.

Table of Content (Continued)

Content	Page
Technical Details of the Vision	93
Professional Development for Future K-12 Engineering and	
Technology Teachers	98
Curricular development	101
PART SEVEN: CONCLUSIONS & RECOMMENDATIONS	104
The Potential Contribution of this Research Project	104
Recommendations for Further Study	106
REFERENCE	111

List of Tables

Table	Page
Table 1. Commonly Shared Undergraduate Lower-Division Engineering	
Foundation Course among Various Engineering Programs at	
the University of Georgia	20
Table 2A: Grades K-8 Number, Four Operations & Algebra Topics Completion	
Chart (According to Georgia Performance Standards)	31
Table 2B. Grades K-8 Geometry Topics Completion Chart	
(According to Georgia Performance Standards)	32
Table 2C. Grades K-6 Measurement & Comparison Topics Completion Chart	
(According to Georgia Performance Standards)	33
Table 2D. Grades K-8 Data Analysis, Probabilities & Statistics Topics	
Completion Chart (According to Georgia Performance Standards)	33
Table 2E. Grades 9-12 Number, Operations & Functions Topics Completion	
Chart (According to Georgia Performance Standards)	34
Table 2F. Grades 9-12 Trigonometry & Analytic Geometry Topics Completion	
Chart (According to Georgia Performance Standards)	35
Table 2G. Grades 9-12 Linear Algebra Topics Completion Chart	
(According to Georgia Performance Standards)	36
Table 2H. Grades 9-12 Vector Graphic Topics Completion Chart	
(According to Georgia Performance Standards)	36
Table 2K. Grades 9-12 Data Analysis, Probabilities & Statistics Topics	
Completion Chart (According to Georgia Performance standards)	37

List of Tables (Continued)

Table	Page
Table 3A. Grades K-8 Physics-Related Science Topics Completion Chart	
(According to Georgia Performance Standards)	43
Table 3B. Grades 9-12 Physics Topics Completion Chart	
(According to Georgia Performance Standards)	44
Table 4A. Grades K-8 Chemistry & Materials Related Topics Completion Chart	
(According to Georgia Performance Standards)	45
Table 4B. Grades 9-12 Chemistry Topics Completion Chart	
(According to Georgia Performance Standards)	46
Table 5. Grades 3 and 5 Environment Science Topics Completion Chart	
(According to Georgia Performance Standards)	47
Table 6. Grade 7 General Scientific Approach Topics Completion Chart	
(According to Georgia Performance Standards)	47
Table 7. Mutual Compatibility between Georgia Performance Standards for	
Engineering and Technology and the	
Proposed "K-12 Engineering Road Map"	51

List of Figures

Figure	Page
Figure 1A. The Statics course in the Academic Flow Chart for the	
Mechanical Design Option of the proposed K-12 Engineering and	
Technology Teacher Education program	4
Figure 1B. The Statics course in the Academic Flow Chart for the	
Manufacturing Option of the proposed K-12 Engineering and Technology	
Teacher Education program	5
Figure 2. University of Georgia scholars contributions to improving K-12	
engineering and technology education	14
Figure 3. Grades 6-12 mathematics courses under	
Georgia Performance Standards	25
Figure 4A. Website of Georgia Performance Standards for	
Science (Grades K-8)	38
Figure 4A. Website of Georgia Performance Standards for	
Physics and Chemistry	38
Figure 4C. Georgia Performance Standards for Engineering and Technology	49

List of Figures

Figure	Page
Figure 4D. Proposed Model for Infusing Engineering Design	
into K-12 Curriculum	50
Figure 5. Engineering Topics Mathematics and Science Pre-requisite	
Completion Chart	57
Figure 6. Notation for undergraduate level appropriate statics topics	65
Figure 7. Two different approaches for infusing engineering analytic course	
content into K-12 engineering curriculum	74
Figure 8. Five-point Likert Scale Delphi survey form	82
Figure 9. Project-Base Learning improves high school students	
core STEM skills	85
Figure 10. The Academic Flow Chart for the Electrical and	
Electronics Option of my previously presented Proposed Model for	
K-12 Engineering and Technology Teacher Education program	87
Figure 11. A streamlined vision for STEM education from K-12 through	
community colleges to universities and beyond	90
Figure 12. Recommended additional research	110