Appendix 2A

Report on the Achievements of K-12 Engineering Education in Australia & its Positive Referential Values for the Evolution of a Potentially Viable K-12 Engineering & Technology Curriculum in the United States

For

HIGH SCHOOL APPROPRIATE ENGINEERING CONTENT KNOWLEDGE IN THE

INFUSION OF ENGINEERING DESIGN INTO K-12 CURRICULUM

(Under the General Topic of "Engineering Design in Secondary Education" and of

"Vision and Recommendations for Engineering-Oriented Professional Development")

Summer 2009

College of Education

University of Georgia

Professors:

Dr. Robert Wicklein, Dr. Roger Hill and Dr. John Mativo

Advisors: Dr. Sidney Thompson (Driftmier Engineering Center)

Student: Edward Locke (elocke@uga.edu)

Table of Content

Content	Daga
	Page
PART ONE: INTRODUCTION	
An Inspiring Presentation	
PART TWO: ADMINISTRATION of K-12 EDUCATION IN AUSTRALIA	
Overview of K-12 Education in Australia	4
K-12 Engineering and Technology Education in Australia	4
PART THREE: OVERVIEW OF THE POSITIVE ASPECTS OF K-12	
ENGINEERING CURRICULUM IN AUSTRALIA	7
Incremental Sequence of K-12 Engineering Program That Matches K-12	
Students' Age-Specific Cognitive Maturity Levels	7
Engineering Programs in New South Wales, Australia, a Case Study	9
History and Recent Development	9
Positive Experience to Learn and Lessons to Avoid	10
The Interdependence Orientation of Australia's K-12 Engineering and	
Technology Curriculum	12
The Incremental Progression of K-12 Engineering and Technology \setminus	
Education in Australia throughout the "Six Stages"	12
Modular Structure of K-12 Engineering Curriculum in Australia	15
Compulsory" versus "Optional" Engineering Curriculum	15
Levels of High School Engineering Courses in Australia	17
Types of High School Engineering Courses in Australia	17
Academic Requirements on High School Engineering Curriculum in	
Australia that Help to Bridge High School and University Engineering	
Programs: a Streamlined Process	18
Methods of Evaluation and Assessment in New South Wales, Australia	
Referential Values of Australian Experience in K-12	
Engineering Curriculum	19
PART FOUR: INTEGRATION OF SOLID ENGINEERING ANALYTIC &	
PREDICTIVE PRINCIPLES & SKILLS WITH "PRACTICAL PROJECTS"	
OF DESIGN IN AUSTRALIAN HIGH SCHOOL	
ENGINEERNG STUDIES	21
Teaching Engineering Analytic Knowledge Content through	
Simple Activities with "Everyday" Objects	21

Table of Content (Continued)

Content	Page
Focus on the "Practical Projects" and Aimed at the "Sequential	
Development of Skills"	21
Typical Engineering Design Activities	22
Focus on "Everyday" and "Practical Projects/Structures" to Foster	
Engineering Design Abilities	25
Typical Engineering Design Projects	25
K-12 Engineering Design Pedagogy in New South Wales, Australia	26
K-12 Design, Creativity and Technology Standards in the	
State of Victoria, Australia	31
System of Standards for the Performance of K-12 Students	31
Unique Characteristics of Australian K-12 Design, Creativity and	
Technology Standards	33
Vocational Credentials for the Domain of Design, Creativity and	
Technology (DCT)	35
Comparing Australian and ITEA Standards	41
Reasonable Expectation on Students' Learning Outcome	
with "Real-World" Results	43
Quality of Students' Design Projects	43
Referential Values of Australian Experience in K-12	
Engineering Curriculum's Expectations, Pedagogy, Standards and	
Outcomes	52
PART FIVE: MATHEMATICS AND SCIENCE EDUCATION AS	
FOUNDATIONS FOR PRE-COLLEGIATE	
ENGINEERING STUDIES	
K-10 Mathematics Education in Victoria, Australia	54
Performance Standards for K-10 Mathematics Education	
in Victoria (Australia)	
K-10 Science Education in Victoria, Australia	57
Performance Standards for PK-10 Science Education in	
Victoria (Australia)	57
Comparison of Mathematics and Science Education in Georgia (United	
States) and in Victoria (Australia)	58

Table of Content (Continued)

Content	Page
Overall Comparison on K-10 Mathematics and Science Performance	
Standards between Georgia (USA) and Victoria (Australia)	61
PART SIX: ENGINEERING ANALYTIC AND PREDICTIVE PRINCIPLES	
AND SKILLS EXPLORED IN AUSTRALIAN K-12	
ENGINEERING STUDIES	62
"Knowledge Content" and "Expected Outcome" for Various Engineering	
Subjects Taught through Project-Based Leaning Type	
of Engineering Modules	62
Engineering Knowledge Content Taught in Australian High Schools	68
Statics Topics Taught at Australian High Schools as an	
Estimated Percentage of All	76
PART SIX: CONCLUSIONS AND RECOMMENDATIONS	85
Conclusions	85
Recommendations	86
REFERENCE	88

List of Tables

Table	Page
Table 1A. K-12 Schooling across Australian States	1
Table 1B. Comparison of K-12 Systems in Australia and the United States	2
Table 2. High School Engineering Courses in Australia	10
Table 3. Focus Areas and Modules	16
Table 4 Interdisciplinary Content for Engineering Application Module 1	
(Household Appliances)	25
Table 5. Industrial Technology (Engineering) Module Content Chart	28
Table 6A. Victorian Essential Learning Focus: Design, Creativity and	
Technology – Learning Focus	37
Table 6B. Victorian Essential Learning Standards: Design, Creativity and	
Technology – Standards	38
Table 7A. "Knowledge Content" and "Expected Outcome" for	
Engineering Mechanics and Hydraulics	62

List of Tables (Continued)

Table	Page
Table 7B. "Knowledge Content" and "Expected Outcome" for	
Engineering Materials	64
Table 7C. "Knowledge Content" and "Expected Outcome" for Engineering	
Electricity/Electronics	68
Table 8A. Knowledge Content and Topical Guidelines for Engineering	
Mechanics and Hydraulics	69
Table 8B. Knowledge Content and Topical Guidelines for	
Engineering Materials	72
Table 8C. Knowledge Content and Topical Guidelines for Engineering	
Electricity/Electronics/ Control Systems	75
Table 9. Statics Topics Taught at Australian High Schools as an	
Estimated Percentage of All	78
Table 10. Comparison of Academic Performance Standards for Mathematics,	
Science and Engineering Education in Victoria (Australia) and in	
Georgia (United States)	85

List of Figures

Figure	Page
Figures 1A. High School statics examination form and material science	
learning materials used in Australia CD	8
Figures 1B. "2007 Higher School Certificate Examination" form for	
"Engineering Studies"	9
Figure 2. Similarities and difference between the Industrial Technology	
Years 7-10 Syllabus in the Technology K-12 Curriculum, and the K-12	
Engineering Road Map developed under my previously presented Proposed	
Model for Infusing Engineering Design into K-12 Curriculum	14
Figure 3A. Continuum of Learning for Engineering Studies Stage 6 Students	15
Figure 3B. Schematic view of Engineering Studies Syllabus Structure	15
Figure 4A. Bridge model in metal and wood panel, in wood sticks,	
and in digital simulation	23
Figure 4B. Electrical motor, lifting Device, Buggy and Stomp Control	23
Figure 4C. Airplane models, and mechanism using alternative energy	24

List of Figures (Continued)

Figure	Page
Figure 5. "Everyday product" and "structures" used as	
referential sources	24
Figure 6A. Comparing Australia's State of Victorian Essential Learning	
Standards for Design, Creativity and Technology, with International	
Technology Education Association's Standards for	
Technological Literacy (Design)	42
Figure 6B. High School Engineering Design Process developed by the U.S.	
National Center for Engineering and Technology Education	43
Figure 7A. Musical instruments designed and prototyped by Australian	
high school students' products from the InTech 2004 Outstanding Major	
Projects from the 2003 Higher School Certificate program, and those	
found in Wal-Mart Store	44
Figure 7B. Musical instruments from the InTech 2005 Outstanding Major	
Projects from the 2004 Higher School Certificate program	45
Figure 7C. Furniture designed and made by Australian high school	
students from the InTech 2004 Outstanding Major Projects from the 2003	
Higher School Certificate	46
Figure 7D. The most "artistic" furniture from Australian high school students	
versus those from Wal-Mart stores	48
Figure 7E. Boats, toy horse, car body, and architectural models	49
Figure 7F. Mechanical and electronics devices designed and fabricated	
by Australian high school students	50
Figures 7G. Equipment found in Sears Store	51
Figure 7H. 3D animation video by Australian high school students	
Figure 8. Pyramidal relations of academic performance standards for	
mathematic, science, engineering and technology	87